Automation School, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
HUYA Incorporation, Guangzhou 511446, China.
Sensors (Basel). 2022 May 26;22(11):4043. doi: 10.3390/s22114043.
Magnetic resonance (MR) imaging is an important computer-aided diagnosis technique with rich pathological information. The factor of physical and physiological constraint seriously affects the applicability of that technique. Thus, computed tomography (CT)-based radiotherapy is more popular on account of its imaging rapidity and environmental simplicity. Therefore, it is of great theoretical and practical significance to design a method that can construct an MR image from the corresponding CT image. In this paper, we treat MR imaging as a machine vision problem and propose a multi-conditional constraint generative adversarial network (GAN) for MR imaging from CT scan data. Considering reversibility of GAN, both generator and reverse generator are designed for MR and CT imaging, respectively, which can constrain each other and improve consistency between features of CT and MR images. In addition, we innovatively treat the real and generated MR image discrimination as object re-identification; cosine error fusing with original GAN loss is designed to enhance verisimilitude and textural features of the MR image. The experimental results with the challenging public CT-MR image dataset show distinct performance improvement over other GANs utilized in medical imaging and demonstrate the effect of our method for medical image modal transformation.
磁共振(MR)成像是一种具有丰富病理信息的重要计算机辅助诊断技术。物理和生理限制因素严重影响了该技术的适用性。因此,由于其成像速度快和环境简单,基于计算机断层扫描(CT)的放射治疗更为流行。因此,设计一种可以从相应的 CT 图像构建 MR 图像的方法具有重要的理论和实际意义。在本文中,我们将 MR 成像视为机器视觉问题,并提出了一种用于从 CT 扫描数据生成 MR 图像的多条件约束生成对抗网络(GAN)。考虑到 GAN 的可逆性,分别为 MR 和 CT 成像设计了生成器和反向生成器,它们可以相互约束,并提高 CT 和 MR 图像特征之间的一致性。此外,我们创新性地将真实和生成的 MR 图像判别视为目标重新识别;设计了余弦误差融合原始 GAN 损失,以增强 MR 图像的逼真度和纹理特征。在具有挑战性的公共 CT-MR 图像数据集上的实验结果表明,与用于医学成像的其他 GAN 相比,该方法具有明显的性能提升,并证明了该方法在医学图像模态转换中的效果。