Suppr超能文献

基于小波的有向传递函数在长时 EEG 记录中癫痫发作的检测。

Epileptic Seizure Detection in Long-Term EEG Recordings by Using Wavelet-Based Directed Transfer Function.

出版信息

IEEE Trans Biomed Eng. 2018 Nov;65(11):2591-2599. doi: 10.1109/TBME.2018.2809798. Epub 2018 Feb 26.

Abstract

GOAL

The accurate automatic detection of epileptic seizures is very important in long-term electroencephalogram (EEG) recordings. In this study, the wavelet decomposition and the directed transfer function (DTF) algorithm were combined to present a novel wavelet-based directed transfer function (WDTF) method for the patient-specific seizure detection.

METHODS

First, five subbands were extracted from 19-channel EEG signals by using wavelet decomposition in a sliding window. Second, the information flow characteristics of five subbands and full frequency band of EEG signals were calculated by the DTF method. The intensity of the outflow information was then used to reduce the feature dimensionality. Finally, all features were combined to identify interictal and ictal EEG segments by the support vector machine classifier.

RESULTS

By using fivefold cross validation, the proposed method had achieved excellent performance with the average accuracy of 99.4%, the average selectivity of 91.1%, the average sensitivity of 92.1%, the average specificity of 99.5%, and the average detection rate of 95.8%.

CONCLUSION

The WDTF method is able to enhance seizure detection results in long-term EEG recordings of focal epilepsy patients.

SIGNIFICANCE

This study may lead to the development of seizure detection system with high performance, thus reducing the workload of epileptologists and facilitating to take corresponding steps promptly after the seizure onset. The high-frequency activity in the epilepsy brain may be of great importance for investigating the pathological mechanism and treatment of seizure.

摘要

目的

准确自动检测癫痫发作在长期脑电图(EEG)记录中非常重要。本研究结合小波分解和有向传递函数(DTF)算法,提出了一种基于小波的有向传递函数(WDTF)方法,用于患者特异性癫痫发作检测。

方法

首先,通过在滑动窗口中进行小波分解,从 19 通道 EEG 信号中提取五个子带。其次,通过 DTF 方法计算五个子带和 EEG 信号全频带的信息流特征。然后,利用流出信息的强度来降低特征的维数。最后,通过支持向量机分类器将所有特征结合起来,识别间歇和发作期 EEG 段。

结果

通过五重交叉验证,该方法的平均准确率为 99.4%,平均选择性为 91.1%,平均敏感性为 92.1%,平均特异性为 99.5%,平均检测率为 95.8%。

结论

WDTF 方法能够增强局灶性癫痫患者长期 EEG 记录中的癫痫发作检测结果。

意义

这项研究可能会开发出具有高性能的癫痫发作检测系统,从而减少癫痫学家的工作量,并在癫痫发作后及时采取相应措施。癫痫大脑中的高频活动对于研究癫痫的病理机制和治疗方法可能具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验