Ali Emran, Angelova Maia, Karmakar Chandan
School of Information Technology, Deakin University, Melbourne Burwood Campus, Melbourne, Victoria 3125, Australia.
Aston Digital Futures Institute, EPS, Aston University, Birmingham, UK.
R Soc Open Sci. 2024 May 29;11(5):230601. doi: 10.1098/rsos.230601. eCollection 2024 May.
Epilepsy is a life-threatening neurological condition. Manual detection of epileptic seizures (ES) is laborious and burdensome. Machine learning techniques applied to electroencephalography (EEG) signals are widely used for automatic seizure detection. Some key factors are worth considering for the real-world applicability of such systems: (i) continuous EEG data typically has a higher class imbalance; (ii) higher variability across subjects is present in physiological signals such as EEG; and (iii) seizure event detection is more practical than random segment detection. Most prior studies failed to address these crucial factors altogether for seizure detection. In this study, we intend to investigate a generalized cross-subject seizure event detection system using the continuous EEG signals from the CHB-MIT dataset that considers all these overlooked aspects. A 5-second non-overlapping window is used to extract 92 features from 22 EEG channels; however, the most significant 32 features from each channel are used in experimentation. Seizure classification is done using a Random Forest (RF) classifier for segment detection, followed by a post-processing method used for event detection. Adopting all the above-mentioned essential aspects, the proposed event detection system achieved 72.63% and 75.34% sensitivity for subject-wise 5-fold and leave-one-out analyses, respectively. This study presents the real-world scenario for ES event detectors and furthers the understanding of such detection systems.
癫痫是一种危及生命的神经系统疾病。人工检测癫痫发作既费力又麻烦。应用于脑电图(EEG)信号的机器学习技术被广泛用于自动癫痫发作检测。对于此类系统在现实世界中的适用性,有一些关键因素值得考虑:(i)连续的EEG数据通常存在更高的类别不平衡;(ii)诸如EEG等生理信号在不同受试者之间存在更大的变异性;(iii)癫痫发作事件检测比随机片段检测更具实用性。大多数先前的研究在癫痫发作检测中未能完全解决这些关键因素。在本研究中,我们打算使用来自CHB - MIT数据集的连续EEG信号,研究一个考虑所有这些被忽视方面的广义跨受试者癫痫发作事件检测系统。使用一个5秒的非重叠窗口从22个EEG通道中提取92个特征;然而,在实验中使用的是每个通道最显著的32个特征。癫痫发作分类使用随机森林(RF)分类器进行片段检测,随后使用一种后处理方法进行事件检测。采用上述所有重要方面,所提出的事件检测系统在按受试者进行5折交叉验证和留一法分析时,灵敏度分别达到了72.63%和75.34%。本研究展示了癫痫发作事件检测器的实际应用场景,并进一步加深了对这种检测系统的理解。