Suppr超能文献

通过 ϵ-邻域方法研究自闭症的结构脑网络的拓扑性质。

Topological Properties of the Structural Brain Network in Autism via ϵ-Neighbor Method.

出版信息

IEEE Trans Biomed Eng. 2018 Oct;65(10):2323-2333. doi: 10.1109/TBME.2018.2794259. Epub 2018 Jan 15.

Abstract

OBJECTIVE

Topological characteristics of the brain can be analyzed using structural brain networks constructed by diffusion tensor imaging (DTI). When a brain network is constructed by the existing parcellation method, the structure of the network changes depending on the scale of parcellation and arbitrary thresholding. To overcome these issues, we propose to construct brain networks using the improved $\varepsilon $-neighbor construction, which is a parcellation free network construction technique.

METHODS

We acquired DTI from 14 control subjects and 15 subjects with autism. We examined the differences in topological properties of the brain networks constructed using the proposed method and the existing parcellation between the two groups.

RESULTS

As the number of nodes increased, the connectedness of the network decreased in the parcellation method. However, for brain networks constructed using the proposed method, connectedness remained at a high level even with an increase in the number of nodes. We found significant differences in several topological properties of brain networks constructed using the proposed method, whereas topological properties were not significantly different for the parcellation method.

CONCLUSION

The brain networks constructed using the proposed method are considered as more realistic than a parcellation method with respect to the stability of connectedness. We found that subjects with autism showed the abnormal characteristics in the brain networks. These results demonstrate that the proposed method may provide new insights to analysis in the structural brain network.

SIGNIFICANCE

We proposed the novel brain network construction method to overcome the shortcoming in the existing parcellation method.

摘要

目的

可以使用基于扩散张量成像(DTI)构建的结构脑网络来分析大脑的拓扑特征。当使用现有的分割方法构建脑网络时,网络的结构会根据分割的规模和任意的阈值而变化。为了克服这些问题,我们提出使用改进的$\varepsilon$-邻域构建来构建脑网络,这是一种无需分割的网络构建技术。

方法

我们从 14 名对照受试者和 15 名自闭症患者中获取了 DTI。我们检查了这两组使用提出的方法和现有的分割构建的脑网络拓扑性质的差异。

结果

随着节点数量的增加,分割方法中的网络连通性降低。然而,对于使用提出的方法构建的脑网络,即使节点数量增加,连通性仍保持在较高水平。我们发现,使用提出的方法构建的脑网络的几个拓扑性质存在显著差异,而使用分割方法构建的脑网络的拓扑性质则没有显著差异。

结论

与分割方法相比,使用提出的方法构建的脑网络在连通性的稳定性方面被认为更真实。我们发现自闭症患者的脑网络存在异常特征。这些结果表明,所提出的方法可能为结构脑网络的分析提供新的见解。

意义

我们提出了一种新的脑网络构建方法,以克服现有分割方法的缺点。

相似文献

4
Whole-brain anatomical networks: does the choice of nodes matter?全脑解剖网络:节点的选择重要吗?
Neuroimage. 2010 Apr 15;50(3):970-83. doi: 10.1016/j.neuroimage.2009.12.027. Epub 2009 Dec 24.
7
Heritability of nested hierarchical structural brain network.嵌套层次结构脑网络的遗传力。
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:554-557. doi: 10.1109/EMBC.2018.8512359.

本文引用的文献

6
Brain connectivity in autism.自闭症中的脑连接性
Front Hum Neurosci. 2014 Jun 2;8:349. doi: 10.3389/fnhum.2014.00349. eCollection 2014.
9
Altered functional and structural brain network organization in autism.自闭症患者大脑功能和结构网络组织的改变。
Neuroimage Clin. 2012 Nov 16;2:79-94. doi: 10.1016/j.nicl.2012.11.006. eCollection 2012.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验