IEEE/ACM Trans Comput Biol Bioinform. 2019 Mar-Apr;16(2):681-687. doi: 10.1109/TCBB.2018.2824805. Epub 2018 Apr 10.
The identification of miRNA regulatory modules can help decipher miRNAs combinatorial regulation effects on the pathogenesis underlying complex diseases, especially in cancer. By integrating miRNA/mRNA expression profiles and sequence-based predicted target site information, we develop a novel cluster-based computational method named CoModule for identifying miRNA regulatory modules (MRMs). The ultimate goal of CoModule is to detect the MRMs, in which the miRNAs in each module are expected to present cooperative mechanisms in regulating their targets mRNAs. Here, the co-expression of miRNAs are believed to present cooperative regulatory relationship, therefore, the critical step of CoModule is first to partition the miRNAs with similar expression into a cluster by employing rough set clustering. After gaining credible miRNA clusters, the targets of regulator are naturally added into corresponding clusters to produce the final miRNA regulatory modules. We apply this present method to ovarian cancer datasets and make a comparison with the other two existing prominent approaches. The results indicate that the modules identified by CoModule perform better than the other two methods ranging from the topological aspects to the biological function. Survival analysis detects a number of prognostic modules with statistical significance, which can help reveal the potential diagnostic for ovarian cancer.
miRNA 调控模块的鉴定有助于破译 miRNA 对复杂疾病(尤其是癌症)发病机制的组合调控作用。通过整合 miRNA/mRNA 表达谱和基于序列的预测靶位信息,我们开发了一种名为 CoModule 的新型基于聚类的计算方法,用于鉴定 miRNA 调控模块(MRM)。CoModule 的最终目标是检测到 MRM,其中每个模块中的 miRNA 有望在调节其靶标 mRNA 方面呈现协同机制。在这里,miRNA 的共表达被认为呈现出协同的调控关系,因此,CoModule 的关键步骤首先是通过粗糙集聚类将具有相似表达模式的 miRNA 划分到一个簇中。获得可靠的 miRNA 簇后,将调节剂的靶标自然添加到相应的簇中,以生成最终的 miRNA 调控模块。我们将此方法应用于卵巢癌数据集,并与另外两种现有的突出方法进行了比较。结果表明,CoModule 鉴定的模块在拓扑和生物学功能方面均优于另外两种方法。生存分析检测到具有统计学意义的预后模块,这有助于揭示卵巢癌的潜在诊断标志物。