Suppr超能文献

An Efficient and Fast Quantum State Estimator With Sparse Disturbance.

作者信息

Zhang Jiaojiao, Cong Shuang, Ling Qing, Li Kezhi

出版信息

IEEE Trans Cybern. 2019 Jul;49(7):2546-2555. doi: 10.1109/TCYB.2018.2828498. Epub 2018 May 4.

Abstract

A pure or nearly pure quantum state can be described as a low-rank density matrix, which is a positive semidefinite and unit-trace Hermitian. We consider the problem of recovering such a low-rank density matrix contaminated by sparse components, from a small set of linear measurements. This quantum state estimation task can be formulated as a robust principal component analysis (RPCA) problem subject to positive semidefinite and unit-trace Hermitian constraints. We propose an efficient and fast inexact alternating direction method of multipliers (I-ADMM), in which the subproblems are solved inexactly and hence have closed-form solutions. We prove global convergence of the proposed I-ADMM, and the theoretical result provides a guideline for parameter setting. Numerical experiments show that the proposed I-ADMM can recover state density matrices of 5 qubits on a laptop in 0.69 s, with 6 ×10 accuracy (99.38% fidelity) using 30% compressive sensing measurements, which outperforms existing algorithms.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验