Fan Jicong, Chow Tommy W S
IEEE Trans Neural Netw Learn Syst. 2020 Mar;31(3):749-761. doi: 10.1109/TNNLS.2019.2909686. Epub 2019 Apr 29.
Robust principal component analysis (RPCA) can recover low-rank matrices when they are corrupted by sparse noises. In practice, many matrices are, however, of high rank and, hence, cannot be recovered by RPCA. We propose a novel method called robust kernel principal component analysis (RKPCA) to decompose a partially corrupted matrix as a sparse matrix plus a high- or full-rank matrix with low latent dimensionality. RKPCA can be applied to many problems such as noise removal and subspace clustering and is still the only unsupervised nonlinear method robust to sparse noises. Our theoretical analysis shows that, with high probability, RKPCA can provide high recovery accuracy. The optimization of RKPCA involves nonconvex and indifferentiable problems. We propose two nonconvex optimization algorithms for RKPCA. They are alternating direction method of multipliers with backtracking line search and proximal linearized minimization with adaptive step size (AdSS). Comparative studies in noise removal and robust subspace clustering corroborate the effectiveness and the superiority of RKPCA.
鲁棒主成分分析(RPCA)能够在低秩矩阵被稀疏噪声破坏时恢复它们。然而在实际中,许多矩阵是高秩的,因此不能通过RPCA恢复。我们提出一种名为鲁棒核主成分分析(RKPCA)的新方法,将部分损坏的矩阵分解为一个稀疏矩阵加上一个具有低潜在维度的高秩或满秩矩阵。RKPCA可应用于许多问题,如去噪和子空间聚类,并且仍然是唯一对稀疏噪声具有鲁棒性的无监督非线性方法。我们的理论分析表明,RKPCA很有可能提供高恢复精度。RKPCA的优化涉及非凸和不可微问题。我们为RKPCA提出了两种非凸优化算法。它们是带回溯线搜索的交替方向乘子法和具有自适应步长(AdSS)的近端线性化最小化。在去噪和鲁棒子空间聚类方面的比较研究证实了RKPCA的有效性和优越性。