Suppr超能文献

用于联合图形套索的高效近端梯度算法

Efficient Proximal Gradient Algorithms for Joint Graphical Lasso.

作者信息

Chen Jie, Shimmura Ryosuke, Suzuki Joe

机构信息

Graduate School of Engineering Science, Osaka University, Osaka 560-0043, Japan.

出版信息

Entropy (Basel). 2021 Dec 2;23(12):1623. doi: 10.3390/e23121623.

Abstract

We consider learning as an undirected graphical model from sparse data. While several efficient algorithms have been proposed for graphical lasso (GL), the alternating direction method of multipliers (ADMM) is the main approach taken concerning joint graphical lasso (JGL). We propose proximal gradient procedures with and without a backtracking option for the JGL. These procedures are first-order methods and relatively simple, and the subproblems are solved efficiently in closed form. We further show the boundedness for the solution of the JGL problem and the iterates in the algorithms. The numerical results indicate that the proposed algorithms can achieve high accuracy and precision, and their efficiency is competitive with state-of-the-art algorithms.

摘要

我们将学习视为从稀疏数据中构建的无向图模型。虽然已经提出了几种用于图套索(GL)的高效算法,但交替方向乘子法(ADMM)是处理联合图套索(JGL)的主要方法。我们针对JGL提出了带有和不带有回溯选项的近端梯度算法。这些算法是一阶方法且相对简单,子问题能够以封闭形式高效求解。我们进一步证明了JGL问题解的有界性以及算法中的迭代序列的有界性。数值结果表明,所提出的算法能够实现高精度,并且其效率与现有最先进算法具有竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b676/8700157/0f62d1cc1cee/entropy-23-01623-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验