Suppr超能文献

使用深度残差 inception 神经网络预测蛋白质主链扭转角

Prediction of Protein Backbone Torsion Angles Using Deep Residual Inception Neural Networks.

作者信息

Fang Chao, Shang Yi, Xu Dong

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2018 Mar 12. doi: 10.1109/TCBB.2018.2814586.

Abstract

Prediction of protein backbone torsion angles (Psi and Phi) can provide important information for protein structure prediction and sequence alignment. Existing methods for Psi-Phi angle prediction have significant room for improvement. In this paper, a new deep residual inception network architecture, called DeepRIN, is proposed for the prediction of Psi-Phi angles. The input to DeepRIN is a feature matrix representing a composition of physico-chemical properties of amino acids, a 20-dimensional position-specific substitution matrix (PSSM) generated by PSI-BLAST, a 30-dimensional hidden Markov Model sequence profile generated by HHBlits, and predicted eight-state secondary structure features. DeepRIN is designed based on inception networks and residual networks that have performed well on image classification and text recognition. The architecture of DeepRIN enables effective encoding of local and global interatcions between amino acids in a protein sequence to achieve accruacte prediction. Extensive experimental results show that DeepRIN outperformed the best existing tools significantly. Compared to the recently released state-of-the-art tool, SPIDER3, DeepRIN reduced the Psi angle prediction error by more than 5 degrees and the Phi angle prediction error by more than 2 degrees on average. The executable tool of DeepRIN is available for download at http://dslsrv8.cs.missouri.edu/~cf797/MUFoldAngle/.

摘要

蛋白质主链扭转角(Ψ和Φ)的预测可为蛋白质结构预测和序列比对提供重要信息。现有的Ψ-Φ角预测方法仍有很大的改进空间。本文提出了一种名为DeepRIN的新型深度残差初始网络架构,用于预测Ψ-Φ角。DeepRIN的输入是一个特征矩阵,它表示氨基酸的物理化学性质组成、由PSI-BLAST生成的20维位置特异性替换矩阵(PSSM)、由HHBlits生成的30维隐马尔可夫模型序列概况以及预测的八状态二级结构特征。DeepRIN是基于在图像分类和文本识别方面表现出色的初始网络和残差网络设计的。DeepRIN的架构能够对蛋白质序列中氨基酸之间的局部和全局相互作用进行有效编码,以实现准确预测。大量实验结果表明,DeepRIN明显优于现有的最佳工具。与最近发布的最先进工具SPIDER3相比,DeepRIN平均将Ψ角预测误差降低了5度以上,将Φ角预测误差降低了2度以上。DeepRIN的可执行工具可在http://dslsrv8.cs.missouri.edu/~cf797/MUFoldAngle/下载。

相似文献

1
Prediction of Protein Backbone Torsion Angles Using Deep Residual Inception Neural Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Mar 12. doi: 10.1109/TCBB.2018.2814586.
3
Unveiling the evolution of policies for enhancing protein structure predictions: A comprehensive analysis.
Comput Biol Med. 2024 Sep;179:108815. doi: 10.1016/j.compbiomed.2024.108815. Epub 2024 Jul 11.
6
NEAR: neural embeddings for amino acid relationships.
Bioinformatics. 2025 Jul 1;41(Supplement_1):i449-i457. doi: 10.1093/bioinformatics/btaf198.
8
MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.
Proteins. 2018 May;86(5):592-598. doi: 10.1002/prot.25487. Epub 2018 Mar 12.
9
DeepSS2GO: protein function prediction from secondary structure.
Brief Bioinform. 2024 Mar 27;25(3). doi: 10.1093/bib/bbae196.
10

引用本文的文献

1
AbSet: A Standardized Data Set of Antibody Structures for Machine Learning Applications.
J Chem Inf Model. 2025 May 26;65(10):4767-4774. doi: 10.1021/acs.jcim.5c00410. Epub 2025 May 11.
3
DCMA: faster protein backbone dihedral angle prediction using a dilated convolutional attention-based neural network.
Front Bioinform. 2024 Oct 18;4:1477909. doi: 10.3389/fbinf.2024.1477909. eCollection 2024.
5
Secondary structure specific simpler prediction models for protein backbone angles.
BMC Bioinformatics. 2022 Jan 4;23(1):6. doi: 10.1186/s12859-021-04525-6.
6
AI applications in functional genomics.
Comput Struct Biotechnol J. 2021 Oct 11;19:5762-5790. doi: 10.1016/j.csbj.2021.10.009. eCollection 2021.
8
Predicting Protein Therapeutic Candidates for Bovine Babesiosis Using Secondary Structure Properties and Machine Learning.
Front Genet. 2021 Jul 23;12:716132. doi: 10.3389/fgene.2021.716132. eCollection 2021.
9
PupStruct: Prediction of Pupylated Lysine Residues Using Structural Properties of Amino Acids.
Genes (Basel). 2020 Nov 28;11(12):1431. doi: 10.3390/genes11121431.
10
Enhancing protein backbone angle prediction by using simpler models of deep neural networks.
Sci Rep. 2020 Nov 10;10(1):19430. doi: 10.1038/s41598-020-76317-6.

本文引用的文献

1
MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.
Proteins. 2018 May;86(5):592-598. doi: 10.1002/prot.25487. Epub 2018 Mar 12.
2
Deep learning methods for protein torsion angle prediction.
BMC Bioinformatics. 2017 Sep 18;18(1):417. doi: 10.1186/s12859-017-1834-2.
4
Protein Structure Classification and Loop Modeling Using Multiple Ramachandran Distributions.
Comput Struct Biotechnol J. 2017 Feb 8;15:243-254. doi: 10.1016/j.csbj.2017.01.011. eCollection 2017.
6
Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network.
J Comput Chem. 2014 Oct 30;35(28):2040-6. doi: 10.1002/jcc.23718. Epub 2014 Sep 12.
7
The protein-folding problem, 50 years on.
Science. 2012 Nov 23;338(6110):1042-6. doi: 10.1126/science.1219021.
8
Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles.
Brief Bioinform. 2013 Nov;14(6):724-36. doi: 10.1093/bib/bbs052. Epub 2012 Aug 27.
9
HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment.
Nat Methods. 2011 Dec 25;9(2):173-5. doi: 10.1038/nmeth.1818.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验