Fang Chao, Shang Yi, Xu Dong
IEEE/ACM Trans Comput Biol Bioinform. 2018 Mar 12. doi: 10.1109/TCBB.2018.2814586.
Prediction of protein backbone torsion angles (Psi and Phi) can provide important information for protein structure prediction and sequence alignment. Existing methods for Psi-Phi angle prediction have significant room for improvement. In this paper, a new deep residual inception network architecture, called DeepRIN, is proposed for the prediction of Psi-Phi angles. The input to DeepRIN is a feature matrix representing a composition of physico-chemical properties of amino acids, a 20-dimensional position-specific substitution matrix (PSSM) generated by PSI-BLAST, a 30-dimensional hidden Markov Model sequence profile generated by HHBlits, and predicted eight-state secondary structure features. DeepRIN is designed based on inception networks and residual networks that have performed well on image classification and text recognition. The architecture of DeepRIN enables effective encoding of local and global interatcions between amino acids in a protein sequence to achieve accruacte prediction. Extensive experimental results show that DeepRIN outperformed the best existing tools significantly. Compared to the recently released state-of-the-art tool, SPIDER3, DeepRIN reduced the Psi angle prediction error by more than 5 degrees and the Phi angle prediction error by more than 2 degrees on average. The executable tool of DeepRIN is available for download at http://dslsrv8.cs.missouri.edu/~cf797/MUFoldAngle/.
蛋白质主链扭转角(Ψ和Φ)的预测可为蛋白质结构预测和序列比对提供重要信息。现有的Ψ-Φ角预测方法仍有很大的改进空间。本文提出了一种名为DeepRIN的新型深度残差初始网络架构,用于预测Ψ-Φ角。DeepRIN的输入是一个特征矩阵,它表示氨基酸的物理化学性质组成、由PSI-BLAST生成的20维位置特异性替换矩阵(PSSM)、由HHBlits生成的30维隐马尔可夫模型序列概况以及预测的八状态二级结构特征。DeepRIN是基于在图像分类和文本识别方面表现出色的初始网络和残差网络设计的。DeepRIN的架构能够对蛋白质序列中氨基酸之间的局部和全局相互作用进行有效编码,以实现准确预测。大量实验结果表明,DeepRIN明显优于现有的最佳工具。与最近发布的最先进工具SPIDER3相比,DeepRIN平均将Ψ角预测误差降低了5度以上,将Φ角预测误差降低了2度以上。DeepRIN的可执行工具可在http://dslsrv8.cs.missouri.edu/~cf797/MUFoldAngle/下载。