Suppr超能文献

使用磷酸化组蛋白H3作为参考来训练蒸馏染色不变卷积网络以检测苏木精和伊红染色的乳腺组织学全切片有丝分裂

Whole-Slide Mitosis Detection in H&E Breast Histology Using PHH3 as a Reference to Train Distilled Stain-Invariant Convolutional Networks.

作者信息

Tellez David, Balkenhol Maschenka, Otte-Holler Irene, van de Loo Rob, Vogels Rob, Bult Peter, Wauters Carla, Vreuls Willem, Mol Suzanne, Karssemeijer Nico, Litjens Geert, van der Laak Jeroen, Ciompi Francesco

出版信息

IEEE Trans Med Imaging. 2018 Sep;37(9):2126-2136. doi: 10.1109/TMI.2018.2820199. Epub 2018 Sep 2.

Abstract

Manual counting of mitotic tumor cells in tissue sections constitutes one of the strongest prognostic markers for breast cancer. This procedure, however, is time-consuming and error-prone. We developed a method to automatically detect mitotic figures in breast cancer tissue sections based on convolutional neural networks (CNNs). Application of CNNs to hematoxylin and eosin (H&E) stained histological tissue sections is hampered by noisy and expensive reference standards established by pathologists, lack of generalization due to staining variation across laboratories, and high computational requirements needed to process gigapixel whole-slide images (WSIs). In this paper, we present a method to train and evaluate CNNs to specifically solve these issues in the context of mitosis detection in breast cancer WSIs. First, by combining image analysis of mitotic activity in phosphohistone-H3 restained slides and registration, we built a reference standard for mitosis detection in entire H&E WSIs requiring minimal manual annotation effort. Second, we designed a data augmentation strategy that creates diverse and realistic H&E stain variations by modifying H&E color channels directly. Using it during training combined with network ensembling resulted in a stain invariant mitosis detector. Third, we applied knowledge distillation to reduce the computational requirements of the mitosis detection ensemble with a negligible loss of performance. The system was trained in a single-center cohort and evaluated in an independent multicenter cohort from the cancer genome atlas on the three tasks of the tumor proliferation assessment challenge. We obtained a performance within the top three best methods for most of the tasks of the challenge.

摘要

在组织切片中手动计数有丝分裂肿瘤细胞是乳腺癌最强的预后标志物之一。然而,这个过程既耗时又容易出错。我们开发了一种基于卷积神经网络(CNN)自动检测乳腺癌组织切片中有丝分裂图像的方法。将CNN应用于苏木精和伊红(H&E)染色的组织学切片时,受到病理学家建立的嘈杂且昂贵的参考标准的阻碍,由于不同实验室染色差异导致缺乏通用性,以及处理千兆像素全切片图像(WSI)所需的高计算要求。在本文中,我们提出了一种训练和评估CNN的方法,以在乳腺癌WSI的有丝分裂检测背景下专门解决这些问题。首先,通过结合磷酸化组蛋白H3重新染色切片中有丝分裂活性的图像分析和配准,我们建立了一个在整个H&E WSI中有丝分裂检测的参考标准,所需的手动注释工作量最小。其次,我们设计了一种数据增强策略,通过直接修改H&E颜色通道来创建多样且逼真的H&E染色变化。在训练期间使用它并结合网络集成,得到了一种对染色不变的有丝分裂检测器。第三,我们应用知识蒸馏来降低有丝分裂检测集成的计算要求,同时性能损失可忽略不计。该系统在单中心队列中进行训练,并在来自癌症基因组图谱的独立多中心队列中针对肿瘤增殖评估挑战的三项任务进行评估。在挑战的大多数任务中,我们获得了排名前三的最佳方法之一的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验