Suppr超能文献

一种基于深度学习的有丝分裂检测方法:在全切片图像中预测肿瘤增殖的应用。

A deep learning approach for mitosis detection: Application in tumor proliferation prediction from whole slide images.

机构信息

Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran.

出版信息

Artif Intell Med. 2021 Apr;114:102048. doi: 10.1016/j.artmed.2021.102048. Epub 2021 Mar 6.

Abstract

The tumor proliferation, which is correlated with tumor grade, is a crucial biomarker indicative of breast cancer patients' prognosis. The most commonly used method in predicting tumor proliferation speed is the counting of mitotic figures in Hematoxylin and Eosin (H&E) histological slides. Manual mitosis counting is known to suffer from reproducibility problems. This paper presents a fully automated system for tumor proliferation prediction from whole slide images via mitosis counting. First, by considering the epithelial tissue as mitosis activity regions, we build a deep-learning-based region of interest detection method to select the high mitosis activity regions from whole slide images. Second, we learned a set of deep neural networks to detect mitosis detection from selected areas. The proposed mitosis detection system is designed to effectively overcome the mitosis detection challenges by two novel deep preprocessing and two-step hard negative mining approaches. Third, we trained a Support Vector Machine (SVM) classifier to predict the final tumor proliferation score. The proposed method was evaluated on the dataset of the Tumor Proliferation Assessment Challenge (TUPAC16) and achieved a 73.81 % F-measure and 0.612 weighted kappa score, respectively, outperforming all previous approaches significantly. Experimental results demonstrate that the proposed system considerably improves the tumor proliferation prediction accuracy and provides a reliable automated tool to support health care make-decisions.

摘要

肿瘤增殖与肿瘤分级相关,是乳腺癌患者预后的重要生物标志物。预测肿瘤增殖速度最常用的方法是在苏木精和伊红(H&E)组织切片中计算有丝分裂数。众所周知,手动有丝分裂计数存在可重复性问题。本文提出了一种通过有丝分裂计数从全幻灯片图像自动预测肿瘤增殖的系统。首先,通过将上皮组织视为有丝分裂活性区域,我们构建了一种基于深度学习的感兴趣区域检测方法,从全幻灯片图像中选择高有丝分裂活性区域。其次,我们学习了一组深度神经网络来从选定区域中检测有丝分裂。所提出的有丝分裂检测系统旨在通过两种新颖的深度预处理和两步硬负挖掘方法有效地克服有丝分裂检测挑战。第三,我们训练了一个支持向量机(SVM)分类器来预测最终的肿瘤增殖评分。所提出的方法在肿瘤增殖评估挑战赛(TUPAC16)数据集上进行了评估,分别实现了 73.81%的 F 度量和 0.612 的加权kappa 评分,明显优于所有以前的方法。实验结果表明,该系统大大提高了肿瘤增殖预测的准确性,并为医疗保健决策提供了可靠的自动工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验