Suppr超能文献

使用两阶段面向任务的深度神经网络从有限的医学成像数据中检测解剖学标志。

Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks.

出版信息

IEEE Trans Image Process. 2017 Oct;26(10):4753-4764. doi: 10.1109/TIP.2017.2721106. Epub 2017 Jun 28.

Abstract

One of the major challenges in anatomical landmark detection, based on deep neural networks, is the limited availability of medical imaging data for network learning. To address this problem, we present a two-stage task-oriented deep learning method to detect large-scale anatomical landmarks simultaneously in real time, using limited training data. Specifically, our method consists of two deep convolutional neural networks (CNN), with each focusing on one specific task. Specifically, to alleviate the problem of limited training data, in the first stage, we propose a CNN based regression model using millions of image patches as input, aiming to learn inherent associations between local image patches and target anatomical landmarks. To further model the correlations among image patches, in the second stage, we develop another CNN model, which includes a) a fully convolutional network that shares the same architecture and network weights as the CNN used in the first stage and also b) several extra layers to jointly predict coordinates of multiple anatomical landmarks. Importantly, our method can jointly detect large-scale (e.g., thousands of) landmarks in real time. We have conducted various experiments for detecting 1200 brain landmarks from the 3D T1-weighted magnetic resonance images of 700 subjects, and also 7 prostate landmarks from the 3D computed tomography images of 73 subjects. The experimental results show the effectiveness of our method regarding both accuracy and efficiency in the anatomical landmark detection.

摘要

基于深度神经网络的解剖学标志点检测的主要挑战之一是网络学习中可用的医学成像数据有限。为了解决这个问题,我们提出了一种两阶段面向任务的深度学习方法,使用有限的训练数据实时同时检测大规模的解剖学标志点。具体来说,我们的方法由两个深度卷积神经网络(CNN)组成,每个网络专注于一个特定的任务。具体来说,为了缓解训练数据有限的问题,在第一阶段,我们提出了一种基于 CNN 的回归模型,使用数百万个图像补丁作为输入,旨在学习局部图像补丁和目标解剖标志点之间的内在关联。为了进一步模拟图像补丁之间的相关性,在第二阶段,我们开发了另一个 CNN 模型,其中包括:a)一个全卷积网络,其架构和网络权重与第一阶段使用的 CNN 相同;b)几个额外的层,用于联合预测多个解剖标志点的坐标。重要的是,我们的方法可以实时联合检测大规模(例如数千个)标志点。我们已经针对从 700 个对象的 3D T1 加权磁共振图像中检测 1200 个大脑标志点和从 73 个对象的 3D 计算机断层扫描图像中检测 7 个前列腺标志点进行了各种实验。实验结果表明,我们的方法在解剖学标志点检测的准确性和效率方面都具有有效性。

相似文献

5
Classification of CT brain images based on deep learning networks.基于深度学习网络的 CT 脑图像分类。
Comput Methods Programs Biomed. 2017 Jan;138:49-56. doi: 10.1016/j.cmpb.2016.10.007. Epub 2016 Oct 20.
7
Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views.学习从任意视角的 X 光片中检测骨盆的解剖标志。
Int J Comput Assist Radiol Surg. 2019 Sep;14(9):1463-1473. doi: 10.1007/s11548-019-01975-5. Epub 2019 Apr 20.
9
Robust anatomical landmark detection with application to MR brain image registration.用于磁共振脑图像配准的稳健解剖学标志点检测
Comput Med Imaging Graph. 2015 Dec;46 Pt 3(0 3):277-90. doi: 10.1016/j.compmedimag.2015.09.002. Epub 2015 Sep 25.
10
Fast and Accurate Craniomaxillofacial Landmark Detection via 3D Faster R-CNN.基于 3D Faster R-CNN 的快速精确颅颌面标志点检测
IEEE Trans Med Imaging. 2021 Dec;40(12):3867-3878. doi: 10.1109/TMI.2021.3099509. Epub 2021 Nov 30.

引用本文的文献

2
PELE scores: pelvic X-ray landmark detection with pelvis extraction and enhancement.PELE 评分:骨盆提取和增强的骨盆 X 射线标志点检测。
Int J Comput Assist Radiol Surg. 2024 May;19(5):939-950. doi: 10.1007/s11548-024-03089-z. Epub 2024 Mar 15.

本文引用的文献

1
Learning-Based Multimodal Image Registration for Prostate Cancer Radiation Therapy.基于学习的前列腺癌放射治疗多模态图像配准
Med Image Comput Comput Assist Interv. 2016 Oct;9902:1-9. doi: 10.1007/978-3-319-46726-9_1. Epub 2016 Oct 2.
5
Detecting Anatomical Landmarks for Fast Alzheimer's Disease Diagnosis.检测用于快速诊断阿尔茨海默病的解剖学标志
IEEE Trans Med Imaging. 2016 Dec;35(12):2524-2533. doi: 10.1109/TMI.2016.2582386. Epub 2016 Jun 20.
8
Dual Sparse Constrained Cascade Regression for Robust Face Alignment.双稀疏约束级联回归的鲁棒人脸对齐方法。
IEEE Trans Image Process. 2016 Feb;25(2):700-12. doi: 10.1109/TIP.2015.2502485. Epub 2015 Nov 20.
9
Multi-atlas segmentation of biomedical images: A survey.生物医学图像的多图谱分割:一项综述。
Med Image Anal. 2015 Aug;24(1):205-219. doi: 10.1016/j.media.2015.06.012. Epub 2015 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验