IEEE Trans Image Process. 2017 Oct;26(10):4753-4764. doi: 10.1109/TIP.2017.2721106. Epub 2017 Jun 28.
One of the major challenges in anatomical landmark detection, based on deep neural networks, is the limited availability of medical imaging data for network learning. To address this problem, we present a two-stage task-oriented deep learning method to detect large-scale anatomical landmarks simultaneously in real time, using limited training data. Specifically, our method consists of two deep convolutional neural networks (CNN), with each focusing on one specific task. Specifically, to alleviate the problem of limited training data, in the first stage, we propose a CNN based regression model using millions of image patches as input, aiming to learn inherent associations between local image patches and target anatomical landmarks. To further model the correlations among image patches, in the second stage, we develop another CNN model, which includes a) a fully convolutional network that shares the same architecture and network weights as the CNN used in the first stage and also b) several extra layers to jointly predict coordinates of multiple anatomical landmarks. Importantly, our method can jointly detect large-scale (e.g., thousands of) landmarks in real time. We have conducted various experiments for detecting 1200 brain landmarks from the 3D T1-weighted magnetic resonance images of 700 subjects, and also 7 prostate landmarks from the 3D computed tomography images of 73 subjects. The experimental results show the effectiveness of our method regarding both accuracy and efficiency in the anatomical landmark detection.
基于深度神经网络的解剖学标志点检测的主要挑战之一是网络学习中可用的医学成像数据有限。为了解决这个问题,我们提出了一种两阶段面向任务的深度学习方法,使用有限的训练数据实时同时检测大规模的解剖学标志点。具体来说,我们的方法由两个深度卷积神经网络(CNN)组成,每个网络专注于一个特定的任务。具体来说,为了缓解训练数据有限的问题,在第一阶段,我们提出了一种基于 CNN 的回归模型,使用数百万个图像补丁作为输入,旨在学习局部图像补丁和目标解剖标志点之间的内在关联。为了进一步模拟图像补丁之间的相关性,在第二阶段,我们开发了另一个 CNN 模型,其中包括:a)一个全卷积网络,其架构和网络权重与第一阶段使用的 CNN 相同;b)几个额外的层,用于联合预测多个解剖标志点的坐标。重要的是,我们的方法可以实时联合检测大规模(例如数千个)标志点。我们已经针对从 700 个对象的 3D T1 加权磁共振图像中检测 1200 个大脑标志点和从 73 个对象的 3D 计算机断层扫描图像中检测 7 个前列腺标志点进行了各种实验。实验结果表明,我们的方法在解剖学标志点检测的准确性和效率方面都具有有效性。
IEEE Trans Image Process. 2017-6-28
Annu Int Conf IEEE Eng Med Biol Soc. 2020-7
IEEE Trans Med Imaging. 2020-12
Comput Methods Programs Biomed. 2016-10-20
Int J Comput Assist Radiol Surg. 2019-4-20
Comput Methods Programs Biomed. 2022-2
Comput Med Imaging Graph. 2015-12
IEEE Trans Med Imaging. 2021-12
Int J Comput Assist Radiol Surg. 2024-5
Int J Comput Assist Radiol Surg. 2023-3
Dentomaxillofac Radiol. 2023-1-1
IEEE Trans Med Imaging. 2022-11
IEEE Trans Med Imaging. 2022-10
Med Image Comput Comput Assist Interv. 2016-10
IEEE J Biomed Health Inform. 2017-5-16
IEEE Trans Med Imaging. 2017-1
Med Image Anal. 2016-11-16
IEEE Trans Med Imaging. 2016-12
Annu Int Conf IEEE Eng Med Biol Soc. 2015-8
IEEE Trans Image Process. 2015-11-20
Med Image Anal. 2015-8