Suppr超能文献

基于概率图引导的双向递归 UNet 进行胰腺分割。

Pancreas segmentation with probabilistic map guided bi-directional recurrent UNet.

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.

Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

出版信息

Phys Med Biol. 2021 May 20;66(11). doi: 10.1088/1361-6560/abfce3.

Abstract

Pancreas segmentation in medical imaging is of great significance for clinical pancreas diagnostics and treatment. However, the large population variations in the pancreas shape and volume cause enormous segmentation difficulties, even for state-of-the-art algorithms utilizing fully convolutional neural networks (FCNs). Specifically, pancreas segmentation suffers from the loss of statement temporal information in 2D methods, and the high computational cost of 3D methods. To alleviate these problems, we propose a probabilistic-map-guided bi-directional recurrent UNet (PBR-UNet) architecture, which fuses intra-slice information and inter-slice probabilistic maps into a local 3D hybrid regularization scheme, which is followed by a bi-directional recurrent optimization scheme. The PBR-UNet method consists of an initial estimation module for efficiently extracting pixel-level probabilistic maps and a primary segmentation module for propagating hybrid information through a 2.5D UNet architecture. Specifically, local 3D information is inferred by combining an input image with the probabilistic maps of the adjacent slices into multi-channel hybrid data, and then hierarchically aggregating the hybrid information of the entire segmentation network. Besides, a bi-directional recurrent optimization mechanism is developed to update the hybrid information in both the forward and the backward directions. This allows the proposed network to make full and optimal use of the local context information. Quantitative and qualitative evaluation was performed on the NIH Pancreas-CT and MSD pancreas dataset, and our proposed PBR-UNet method achieved similar segmentation results with less computational cost compared to other state-of-the-art methods.

摘要

医学影像中的胰腺分割对于临床胰腺诊断和治疗具有重要意义。然而,胰腺形状和体积的个体差异很大,这给胰腺分割带来了巨大的困难,即使是利用全卷积神经网络(FCNs)的最先进算法也是如此。具体来说,胰腺分割在 2D 方法中存在时间信息丢失的问题,而 3D 方法的计算成本又很高。为了解决这些问题,我们提出了一种概率图引导的双向递归 U 型网络(PBR-UNet)架构,该架构将切片内信息和切片间概率图融合到局部 3D 混合正则化方案中,然后采用双向递归优化方案。PBR-UNet 方法由一个初始估计模块组成,用于高效提取像素级概率图,以及一个主要的分割模块,用于通过 2.5D U 型网络架构传播混合信息。具体来说,通过将输入图像与相邻切片的概率图组合成多通道混合数据,推断出局部 3D 信息,然后分层聚合整个分割网络的混合信息。此外,还开发了一种双向递归优化机制,用于在正向和反向两个方向更新混合信息。这使得所提出的网络能够充分、最优地利用局部上下文信息。我们在 NIH Pancreas-CT 和 MSD 胰腺数据集上进行了定量和定性评估,与其他最先进的方法相比,我们提出的 PBR-UNet 方法在计算成本更低的情况下获得了相似的分割结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验