Suppr超能文献

利用散斑相关和二维高速帧频对比增强超声技术在体测量三维速度和容积流量。

3-D Velocity and Volume Flow Measurement In Vivo Using Speckle Decorrelation and 2-D High-Frame-Rate Contrast-Enhanced Ultrasound.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Dec;65(12):2233-2244. doi: 10.1109/TUFFC.2018.2850535. Epub 2018 Jun 27.

Abstract

Being able to measure 3-D flow velocity and volumetric flow rate effectively in the cardiovascular system is valuable but remains a significant challenge in both clinical practice and research. Currently, there has not been an effective and practical solution to the measurement of volume flow using ultrasound imaging systems due to challenges in existing 3-D imaging techniques and high system cost. In this study, a new technique for quantifying volumetric flow rate from the cross-sectional imaging plane of the blood vessel was developed by using speckle decorrelation (SDC), 2-D high-frame-rate imaging with a standard 1-D array transducer, microbubble contrast agents, and ultrasound imaging velocimetry (UIV). Through SDC analysis of microbubble signals acquired with a very high frame rate and by using UIV to estimate the two in-plane flow velocity components, the third and out-of-plane velocity component can be obtained over time and integrated to estimate volume flow. The proposed technique was evaluated on a wall-less flow phantom in both steady and pulsatile flow. UIV in the longitudinal direction was conducted as a reference. The influences of frame rate, mechanical index (MI), orientation of imaging plane, and compounding on velocity estimation were also studied. In addition, an in vivo trial on the abdominal aorta of a rabbit was conducted. The results show that the new system can estimate volume flow with an averaged error of 3.65% ± 2.37% at a flow rate of 360 mL/min and a peak velocity of 0.45 m/s, and an error of 5.03% ± 2.73% at a flow rate of 723 mL/min and a peak velocity of 0.8 m/s. The accuracy of the flow velocity and volumetric flow rate estimation directly depend on the imaging frame rate. With a frame rate of 6000 Hz, a velocity up to 0.8 m/s can be correctly estimated. A higher mechanical index (MI = 0.42) is shown to produce greater errors (up to 21.78±0.49%, compared to 3.65±2.37% at MI = 0.19). An in vivo trial, where velocities up to 1 m/s were correctly measured, demonstrated the potential of the technique in clinical applications.

摘要

能够有效地测量心血管系统中的三维流速和容积流量是非常有价值的,但在临床实践和研究中仍然是一个重大挑战。目前,由于现有三维成像技术的挑战和系统成本高,仍然没有一种有效且实用的方法可以通过超声成像系统来测量容积流量。在这项研究中,通过使用散斑去相关(SDC)、使用标准一维阵列换能器进行二维高帧率成像、微泡对比剂和超声成像速度测量(UIV),从血管的横截面成像平面开发了一种新的量化容积流量的技术。通过对高速帧率采集的微泡信号进行 SDC 分析,并使用 UIV 估计两个平面内流速分量,可以随时间获得第三和离平面速度分量,并对其进行积分以估计容积流量。该技术在稳态和脉动流的无壁流体模型中进行了评估。还进行了纵向 UIV 作为参考。还研究了帧率、机械指数(MI)、成像平面方向和复合对速度估计的影响。此外,还对兔的腹主动脉进行了体内试验。结果表明,新系统可以以 360 mL/min 的流速和 0.45 m/s 的峰值速度测量时的平均误差为 3.65%±2.37%,以 723 mL/min 的流速和 0.8 m/s 的峰值速度测量时的平均误差为 5.03%±2.73%,来估计容积流量。流速和容积流量估计的准确性直接取决于成像帧率。在帧率为 6000 Hz 时,可以正确估计高达 0.8 m/s 的速度。较高的机械指数(MI = 0.42)会产生较大的误差(高达 21.78±0.49%,而 MI = 0.19 时为 3.65±2.37%)。高达 1 m/s 的速度的体内试验证明了该技术在临床应用中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验