Suppr超能文献

机器学习有助于鉴定三阴性乳腺癌的新药物作用机制。

Machine Learning Helps Identify New Drug Mechanisms in Triple-Negative Breast Cancer.

出版信息

IEEE Trans Nanobioscience. 2018 Jul;17(3):251-259. doi: 10.1109/TNB.2018.2851997. Epub 2018 Jul 2.

Abstract

This paper demonstrates the ability of mach- ine learning approaches to identify a few genes among the 23,398 genes of the human genome to experiment on in the laboratory to establish new drug mechanisms. As a case study, this paper uses MDA-MB-231 breast cancer single-cells treated with the antidiabetic drug metformin. We show that mixture-model-based unsupervised methods with validation from hierarchical clustering can identify single-cell subpopulations (clusters). These clusters are characterized by a small set of genes (1% of the genome) that have significant differential expression across the clusters and are also highly correlated with pathways with anticancer effects driven by metformin. Among the identified small set of genes associated with reduced breast cancer incidence, laboratory experiments on one of the genes, CDC42, showed that its downregulation by metformin inhibited cancer cell migration and proliferation, thus validating the ability of machine learning approaches to identify biologically relevant candidates for laboratory experiments. Given the large size of the human genome and limitations in cost and skilled resources, the broader impact of this work in identifying a small set of differentially expressed genes after drug treatment lies in augmenting the drug-disease knowledge of pharmacogenomics experts in laboratory investigations, which could help establish novel biological mechanisms associated with drug response in diseases beyond breast cancer.

摘要

本文展示了机器学习方法在人类基因组的 23398 个基因中识别少数几个基因进行实验室实验,以建立新的药物机制的能力。作为一个案例研究,本文使用了接受抗糖尿病药物二甲双胍治疗的 MDA-MB-231 乳腺癌单细胞。我们表明,基于混合模型的无监督方法与层次聚类的验证可以识别单细胞亚群(簇)。这些簇的特征是一小部分基因(基因组的 1%),它们在簇之间具有显著的差异表达,并且与二甲双胍驱动的具有抗癌作用的途径高度相关。在所识别的与降低乳腺癌发病率相关的一小部分基因中,对其中一个基因 CDC42 的实验室实验表明,二甲双胍下调该基因抑制了癌细胞的迁移和增殖,从而验证了机器学习方法识别生物学相关候选物进行实验室实验的能力。鉴于人类基因组的庞大规模以及成本和熟练资源的限制,这项工作在药物治疗后识别一小部分差异表达基因方面的更广泛影响在于增强了药物基因组学专家在实验室研究中的药物疾病知识,这有助于建立与乳腺癌以外疾病的药物反应相关的新的生物学机制。

相似文献

本文引用的文献

10
Diffusion maps for high-dimensional single-cell analysis of differentiation data.用于分化数据高维单细胞分析的扩散映射
Bioinformatics. 2015 Sep 15;31(18):2989-98. doi: 10.1093/bioinformatics/btv325. Epub 2015 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验