Suppr超能文献

表型筛选与机器学习相结合,以有效鉴定乳腺癌选择性治疗靶点。

Phenotypic Screening Combined with Machine Learning for Efficient Identification of Breast Cancer-Selective Therapeutic Targets.

机构信息

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00290 Helsinki, Finland.

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00290 Helsinki, Finland; Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland.

出版信息

Cell Chem Biol. 2019 Jul 18;26(7):970-979.e4. doi: 10.1016/j.chembiol.2019.03.011. Epub 2019 May 2.

Abstract

The lack of functional understanding of most mutations in cancer, combined with the non-druggability of most proteins, challenge genomics-based identification of oncology drug targets. We implemented a machine-learning-based approach (idTRAX), which relates cell-based screening of small-molecule compounds to their kinase inhibition data, to directly identify effective and readily druggable targets. We applied idTRAX to triple-negative breast cancer cell lines and efficiently identified cancer-selective targets. For example, we found that inhibiting AKT selectively kills MFM-223 and CAL148 cells, while inhibiting FGFR2 only kills MFM-223. Since the effects of catalytically inhibiting a protein can diverge from those of reducing its levels, targets identified by idTRAX frequently differ from those identified through gene knockout/knockdown methods. This is critical if the purpose is to identify targets specifically for small-molecule drug development, whereby idTRAX may produce fewer false-positives. The rapid nature of the approach suggests that it may be applicable in personalizing therapy.

摘要

由于大多数癌症突变缺乏功能理解,且大多数蛋白质不可成药,基于基因组学的肿瘤药物靶点的识别受到挑战。我们采用了一种基于机器学习的方法(idTRAX),该方法将基于细胞的小分子化合物筛选与激酶抑制数据相关联,以直接鉴定有效且易于成药的靶点。我们将 idTRAX 应用于三阴性乳腺癌细胞系,并有效地鉴定了癌症选择性靶点。例如,我们发现抑制 AKT 可选择性杀死 MFM-223 和 CAL148 细胞,而抑制 FGFR2 仅杀死 MFM-223。由于催化抑制一种蛋白质的效果可能与降低其水平的效果不同,因此 idTRAX 鉴定的靶点通常与通过基因敲除/敲低方法鉴定的靶点不同。如果目的是专门为小分子药物开发鉴定靶点,那么这一点至关重要,因为 idTRAX 可能会产生更少的假阳性。该方法的快速性质表明它可能适用于个体化治疗。

相似文献

引用本文的文献

10
A review on machine learning approaches and trends in drug discovery.关于药物发现中机器学习方法与趋势的综述。
Comput Struct Biotechnol J. 2021 Aug 12;19:4538-4558. doi: 10.1016/j.csbj.2021.08.011. eCollection 2021.

本文引用的文献

1
Donated chemical probes for open science.开放科学用捐赠化学探针。
Elife. 2018 Apr 20;7:e34311. doi: 10.7554/eLife.34311.
3
The target landscape of clinical kinase drugs.临床激酶药物的目标格局。
Science. 2017 Dec 1;358(6367). doi: 10.1126/science.aan4368.
7
Large-Scale Profiling of Kinase Dependencies in Cancer Cell Lines.癌细胞系中激酶依赖性的大规模分析
Cell Rep. 2016 Mar 15;14(10):2490-501. doi: 10.1016/j.celrep.2016.02.023. Epub 2016 Mar 3.
10
Comprehensive characterization of the Published Kinase Inhibitor Set.全面表征已发表的激酶抑制剂集。
Nat Biotechnol. 2016 Jan;34(1):95-103. doi: 10.1038/nbt.3374. Epub 2015 Oct 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验