Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
Nature. 2018 Jul;559(7714):410-414. doi: 10.1038/s41586-018-0224-x. Epub 2018 Jun 6.
Mutations in the E3 ubiquitin ligase parkin (PARK2, also known as PRKN) and the protein kinase PINK1 (also known as PARK6) are linked to autosomal-recessive juvenile parkinsonism (AR-JP); at the cellular level, these mutations cause defects in mitophagy, the process that organizes the destruction of damaged mitochondria. Parkin is autoinhibited, and requires activation by PINK1, which phosphorylates Ser65 in ubiquitin and in the parkin ubiquitin-like (Ubl) domain. Parkin binds phospho-ubiquitin, which enables efficient parkin phosphorylation; however, the enzyme remains autoinhibited with an inaccessible active site. It is unclear how phosphorylation of parkin activates the molecule. Here we follow the activation of full-length human parkin by hydrogen-deuterium exchange mass spectrometry, and reveal large-scale domain rearrangement in the activation process, during which the phospho-Ubl rebinds to the parkin core and releases the catalytic RING2 domain. A 1.8 Å crystal structure of phosphorylated human parkin reveals the binding site of the phospho-Ubl on the unique parkin domain (UPD), involving a phosphate-binding pocket lined by AR-JP mutations. Notably, a conserved linker region between Ubl and the UPD acts as an activating element (ACT) that contributes to RING2 release by mimicking RING2 interactions on the UPD, explaining further AR-JP mutations. Our data show how autoinhibition in parkin is resolved, and suggest a mechanism for how parkin ubiquitinates its substrates via an untethered RING2 domain. These findings open new avenues for the design of parkin activators for clinical use.
E3 泛素连接酶 parkin(也称为 PARK2,也称为 PRKN)和蛋白激酶 PINK1(也称为 PARK6)中的突变与常染色体隐性青少年帕金森病(AR-JP)有关;在细胞水平上,这些突变导致线粒体自噬缺陷,线粒体自噬是一种组织破坏受损线粒体的过程。Parkin 是自动抑制的,需要 PINK1 的激活,PINK1 磷酸化泛素和 parkin 泛素样(Ubl)结构域中的 Ser65。Parkin 结合磷酸泛素,这使得 parkin 磷酸化有效;然而,该酶仍然处于无活性的活性部位。目前尚不清楚 parkin 的磷酸化如何激活该分子。在这里,我们通过氢氘交换质谱法跟踪全长人 parkin 的激活,揭示了激活过程中的大规模结构域重排,在此过程中,磷酸泛素重新结合到 parkin 核心并释放催化 RING2 结构域。磷酸化人 parkin 的 1.8 Å 晶体结构揭示了磷酸泛素在独特的 parkin 结构域(UPD)上的结合位点,涉及由 AR-JP 突变修饰的磷酸结合口袋。值得注意的是,Ubl 和 UPD 之间的保守连接区作为激活元件(ACT),通过模拟 UPD 上的 RING2 相互作用来促进 RING2 的释放,解释了更多的 AR-JP 突变。我们的数据显示了 parkin 中自动抑制是如何被解决的,并提出了 parkin 通过无束缚的 RING2 结构域泛素化其底物的机制。这些发现为临床使用的 parkin 激活剂的设计开辟了新途径。