Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
Mol Microbiol. 2018 Aug;109(4):541-554. doi: 10.1111/mmi.14059. Epub 2018 Aug 27.
Most Gram-negative bacteria assemble lipopolysaccharides (LPS) on their surface to form a permeability barrier against many antimicrobials. LPS is synthesized at the inner membrane and then transported to the outer leaflet of the outer membrane. Although the overall LPS structure is conserved, LPS molecules can differ in composition at the species and strain level. Some bacteria also regulate when to modify phosphates on LPS at the inner membrane in order to become resistant to cationic antimicrobial peptides. The multi-protein Lpt trans-envelope machine, which transports LPS from the inner to the outer membrane, must therefore handle a variety of substrates. The most poorly understood step in LPS transport is how the ATP-binding cassette LptB FG transporter extracts LPS from the inner membrane. Here, we define residue K34 in LptG as a site within the structural cavity of the Escherichia coli LptB FG transporter that interacts electrostatically with phosphates on unmodified LPS. Alterations to this residue cause transport defects that are suppressed by the activation of the BasSR two-component signaling system, which results in modifications to the LPS phosphates. We also show this residue is part of a larger site in LptG that differentially contributes to the transport of unmodified and modified LPS.
大多数革兰氏阴性菌在其表面组装脂多糖(LPS)以形成对抗许多抗菌药物的渗透屏障。 LPS 在内膜上合成,然后转运到外膜的外叶。尽管 LPS 的整体结构是保守的,但 LPS 分子在物种和菌株水平上的组成可能存在差异。一些细菌还调节何时在内膜上修饰 LPS 的磷酸盐,以抵抗阳离子抗菌肽。因此,运输 LPS 的多蛋白 Lpt 跨膜机器必须处理各种底物。LPS 转运中最不为人理解的步骤是 ATP 结合盒 LptB FG 转运蛋白如何从内膜中提取 LPS。在这里,我们将 LptG 中的残基 K34 定义为大肠杆菌 LptB FG 转运蛋白结构腔中的一个位点,该位点与未修饰 LPS 上的磷酸盐静电相互作用。该残基的改变会导致转运缺陷,而 BasSR 双组分信号系统的激活会抑制这些缺陷,从而导致 LPS 磷酸酯的修饰。我们还表明,该残基是 LptG 中更大位点的一部分,该位点对未修饰和修饰 LPS 的转运有不同的贡献。