Suppr超能文献

球形红杆菌中中心色素体的连接。

Connectivity of centermost chromatophores in Rhodobacter sphaeroides bacteria.

机构信息

Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.

Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.

出版信息

Mol Microbiol. 2018 Sep;109(6):812-825. doi: 10.1111/mmi.14077. Epub 2018 Sep 15.

Abstract

The size of whole Rhodobacter sphaeroides prevents 3D visualization of centermost chromatophores in their native environment. This study combines cryo-focused ion beam milling with cryo-electron tomography to probe vesicle architecture both in situ and in 3D. Developing chromatophores are membrane-bound buds that remain in topological continuity with the cytoplasmic membrane and detach into vesicles when mature. Mature chromatophores closest to the cell wall are typically isolated vesicles, whereas centermost chromatophores are either linked to neighboring chromatophores or contain smaller, budding structures. Isolated chromatophores comprised a minority of centermost chromatophores. Connections between vesicles in growing bacteria are through ~10 nm-long, ~5 nm-wide linkers, and are thus physical rather than functional in terms of converting photons to ATP. In cells in the stationary phase, chromatophores fuse with neighboring vesicles, lose their spherical structure, and greatly increase in volume. The fusion and morphological changes seen in older bacteria are likely a consequence of the aging process, and are not representative of connectivity in healthy R. sphaeroides. Our results suggest that chromatophores can adopt either isolated or connected morphologies within a single bacterium. Revealing the organization of chromatophore vesicles throughout the cell is an important step in understanding the photosynthetic mechanisms in R. sphaeroides.

摘要

完整的球形红杆菌大小阻止了在其天然环境中对最中心类囊体的 3D 可视化。本研究结合了冷冻聚焦离子束铣削和冷冻电子断层扫描,以原位和 3D 方式探测囊泡结构。正在发育的类囊体是与细胞质膜保持拓扑连续性的膜结合芽,当成熟时会分离成囊泡。最接近细胞壁的成熟类囊体通常是分离的囊泡,而最中心的类囊体要么与相邻的类囊体相连,要么包含较小的芽状结构。孤立的类囊体仅占最中心类囊体的一小部分。在生长中的细菌中,囊泡之间的连接是通过10nm 长、5nm 宽的接头实现的,因此从将光子转化为 ATP 的角度来看,这些连接是物理上的,而不是功能上的。在静止期的细胞中,类囊体与相邻的囊泡融合,失去其球形结构,并大大增加体积。在较老的细菌中观察到的融合和形态变化很可能是衰老过程的结果,并不代表健康的 R. sphaeroides 的连接性。我们的结果表明,类囊体在单个细菌中可以采用分离或连接的形态。揭示整个细胞中类囊体囊泡的组织是理解 R. sphaeroides 光合作用机制的重要步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验