Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K.
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States.
J Am Chem Soc. 2024 Jul 24;146(29):20019-20032. doi: 10.1021/jacs.4c03913. Epub 2024 Jul 11.
Small, diffusible redox proteins play an essential role in electron transfer (ET) in respiration and photosynthesis, sustaining life on Earth by shuttling electrons between membrane-bound complexes via finely tuned and reversible interactions. Ensemble kinetic studies show transient ET complexes form in two distinct stages: an "encounter" complex largely mediated by electrostatic interactions, which subsequently, through subtle reorganization of the binding interface, forms a "productive" ET complex stabilized by additional hydrophobic interactions around the redox-active cofactors. Here, using single-molecule force spectroscopy (SMFS) we dissected the transient ET complexes formed between the photosynthetic reaction center-light harvesting complex 1 (RC-LH1) of and its native electron donor cytochrome (cyt ). Importantly, SMFS resolves the distribution of interaction forces into low (∼150 pN) and high (∼330 pN) components, with the former more susceptible to salt concentration and to alteration of key charged residues on the RC. Thus, the low force component is suggested to reflect the contribution of electrostatic interactions in forming the initial encounter complex, whereas the high force component reflects the additional stabilization provided by hydrophobic interactions to the productive ET complex. Employing molecular dynamics simulations, we resolve five intermediate states that comprise the encounter, productive ET and leaving complexes, predicting a weak interaction between cyt and the LH1 ring near the RC-L subunit that could lie along the exit path for oxidized cyt . The multimodal nature of the interactions of ET complexes captured here may have wider implications for ET in all domains of life.
小而可扩散的氧化还原蛋白在呼吸和光合作用中的电子传递 (ET) 中起着至关重要的作用,通过精细调节和可逆相互作用在膜结合复合物之间穿梭电子,维持着地球上的生命。整体动力学研究表明,瞬态 ET 复合物形成分为两个不同阶段:一个主要由静电相互作用介导的“相遇”复合物,随后通过结合界面的细微重组,形成一个由氧化还原活性辅因子周围额外的疏水性相互作用稳定的“生产性”ET 复合物。在这里,我们使用单分子力谱 (SMFS) 分析了 和其天然电子供体细胞色素 c (cyt c) 之间形成的瞬态 ET 复合物。重要的是,SMFS 将相互作用力的分布解析为低(∼150 pN)和高(∼330 pN)分量,前者更容易受到盐浓度和 RC 上关键带电残基改变的影响。因此,低力分量反映了静电相互作用在形成初始相遇复合物中的贡献,而高力分量反映了疏水性相互作用对生产性 ET 复合物的额外稳定作用。通过分子动力学模拟,我们解析了包含相遇、生产性 ET 和离开复合物的五个中间状态,预测 cyt c 与 RC-L 亚基附近的 LH1 环之间存在弱相互作用,该相互作用可能沿着氧化 cyt c 的出口路径。这里捕获的 ET 复合物相互作用的多模态性质可能对所有生命领域的 ET 具有更广泛的意义。