Suppr超能文献

开发基于案例的混合式学习生态系统以优化精准医学:减少过度诊断和过度治疗

Developing a Case-Based Blended Learning Ecosystem to Optimize Precision Medicine: Reducing Overdiagnosis and Overtreatment.

作者信息

Podder Vivek, Dhakal Binod, Shaik Gousia Ummae Salma, Sundar Kaushik, Sivapuram Madhava Sai, Chattu Vijay Kumar, Biswas Rakesh

机构信息

Department of Internal Medicine, Tairunnessa Memorial Medical College, Gazipur 1704, Bangladesh.

Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

出版信息

Healthcare (Basel). 2018 Jul 10;6(3):78. doi: 10.3390/healthcare6030078.

Abstract

INTRODUCTION

Precision medicine aims to focus on meeting patient requirements accurately, optimizing patient outcomes, and reducing under-/overdiagnosis and therapy. We aim to offer a fresh perspective on accuracy driven “age-old precision medicine” and illustrate how newer case-based blended learning ecosystems (CBBLE) can strengthen the bridge between age-old precision approaches with modern technology and omics-driven approaches.

METHODOLOGY

We present a series of cases and examine the role of precision medicine within a “case-based blended learning ecosystem” (CBBLE) as a practicable tool to reduce overdiagnosis and overtreatment. We illustrated the workflow of our CBBLE through case-based narratives from global students of CBBLE in high and low resource settings as is reflected in global health.

RESULTS

Four micro-narratives based on collective past experiences were generated to explain concepts of age-old patient-centered scientific accuracy and precision and four macro-narratives were collected from individual learners in our CBBLE. Insights gathered from a critical appraisal and thematic analysis of the narratives were discussed.

DISCUSSION AND CONCLUSION

Case-based narratives from the individual learners in our CBBLE amply illustrate their journeys beginning with “age-old precision thinking” in low-resource settings and progressing to “omics-driven” high-resource precision medicine setups to demonstrate how the approaches, used judiciously, might reduce the current pandemic of over-/underdiagnosis and over-/undertreatment.

摘要

引言

精准医学旨在精准满足患者需求,优化患者治疗效果,并减少诊断不足/过度诊断以及治疗不足/过度治疗。我们旨在为以准确性为导向的“古老精准医学”提供全新视角,并阐述更新的基于案例的混合学习生态系统(CBBLE)如何加强古老精准方法与现代技术及组学驱动方法之间的联系。

方法

我们展示了一系列案例,并探讨精准医学在“基于案例的混合学习生态系统”(CBBLE)中作为减少过度诊断和过度治疗的实用工具所发挥的作用。我们通过来自全球高资源和低资源环境下CBBLE学生基于案例的叙述说明了CBBLE的工作流程,这反映在全球健康状况中。

结果

基于过去的集体经验生成了四个微观叙述,以解释古老的以患者为中心的科学准确性和精准性概念,并从我们CBBLE的个体学习者那里收集了四个宏观叙述。讨论了从对这些叙述的批判性评价和主题分析中获得的见解。

讨论与结论

我们CBBLE中个体学习者基于案例的叙述充分说明了他们从低资源环境下的“古老精准思维”开始,到“组学驱动”的高资源精准医学设置的历程,以展示如何明智地使用这些方法可能减少当前过度/不足诊断和过度/不足治疗的普遍情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddc/6163835/1c94772958ee/healthcare-06-00078-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验