Suppr超能文献

使用人工神经网络的新型大血管闭塞院前预测模型

Novel Prehospital Prediction Model of Large Vessel Occlusion Using Artificial Neural Network.

作者信息

Chen Zhicai, Zhang Ruiting, Xu Feizhou, Gong Xiaoxian, Shi Feina, Zhang Meixia, Lou Min

机构信息

Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.

Department of Engineering, Microcloud Communication Technology, Hangzhou, China.

出版信息

Front Aging Neurosci. 2018 Jun 26;10:181. doi: 10.3389/fnagi.2018.00181. eCollection 2018.

Abstract

: Identifying large vessel occlusion (LVO) patients in the prehospital triage stage to avoid unnecessary and costly delays is important but still challenging. We aim to develop an artificial neural network (ANN) algorithm to predict LVO using prehospital accessible data including demographics, National Institutes of Health Stroke Scale (NIHSS) items and vascular risk factors. : Consecutive acute ischemic stroke patients who underwent CT angiography (CTA) or time of flight MR angiography (TOF-MRA) and received reperfusion therapy within 8 h from symptom onset were included. The diagnosis of LVO was defined as occlusion of the intracranial internal carotid artery (ICA), M1 and M2 segments of the middle cerebral artery (MCA) and basilar artery on CTA or TOF-MRA before treatment. Patients with and without LVO were randomly selected at a 1:1 ratio. The ANN model was developed using backpropagation algorithm, and 10-fold cross-validation was used to validate the model. The comparison of diagnostic parameters between the ANN model and previously established prehospital prediction scales were performed. : Finally, 300 LVO and 300 non-LVO patients were randomly selected for the training and validation of the ANN model. The mean Youden index, sensitivity, specificity and accuracy of the ANN model based on the 10-fold cross-validation analysis were 0.640, 0.807, 0.833 and 0.820, respectively. The area under the curve (AUC), Youden index and accuracy of the ANN model were all higher than other prehospital prediction scales. : The ANN can be an effective tool for the recognition of LVO in the prehospital triage stage.

摘要

在院前分诊阶段识别大血管闭塞(LVO)患者以避免不必要且代价高昂的延误很重要,但仍具有挑战性。我们旨在开发一种人工神经网络(ANN)算法,利用包括人口统计学、美国国立卫生研究院卒中量表(NIHSS)项目和血管危险因素等院前可获取的数据来预测LVO。

连续纳入症状发作8小时内接受CT血管造影(CTA)或时间飞跃磁共振血管造影(TOF-MRA)并接受再灌注治疗的急性缺血性卒中患者。LVO的诊断定义为治疗前CTA或TOF-MRA显示颅内颈内动脉(ICA)、大脑中动脉(MCA)的M1和M2段以及基底动脉闭塞。有LVO和无LVO的患者按1:1比例随机选取。使用反向传播算法开发ANN模型,并采用10折交叉验证来验证该模型。对ANN模型与先前建立的院前预测量表的诊断参数进行比较。

最后,随机选取300例LVO患者和300例非LVO患者用于ANN模型的训练和验证。基于10折交叉验证分析,ANN模型的平均约登指数、敏感性、特异性和准确性分别为0.640、0.807、0.833和0.820。ANN模型的曲线下面积(AUC)、约登指数和准确性均高于其他院前预测量表。

ANN可成为院前分诊阶段识别LVO的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eea0/6028566/43115c64a7a8/fnagi-10-00181-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验