Suppr超能文献

基于可见光照可擦除氧化物 FET 的深陷阱界面非易失性存储器。

Visible Light-Erasable Oxide FET-Based Nonvolatile Memory Operated with a Deep Trap Interface.

机构信息

ICT Materials Research Group, Materials & Components Basic Research Division , Electronics and Telecommunications Research Institute (ETRI) , 218 Gajeong-ro , Yuseong-gu, Daejeon 305-700 , South Korea.

Department of Advanced Device Engineering , University of Science and Technology , 217 Gajeong-ro , Yuseong-gu, Daejeon 305-350 , South Korea.

出版信息

ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26405-26412. doi: 10.1021/acsami.8b07749. Epub 2018 Jul 24.

Abstract

A new concept of a tunneling oxide-free nonvolatile memory device with a deep trap interface floating gate is proposed. This device demonstrates a high on/off current ratio of 10 and a sizable memory window due to deep traps at the interface between the channel and gate dielectric layers. Interestingly, irradiation with 400 nm light can completely restore the program state to the initial one (performing an erasing process), which is attributed to the visible light-sensitive channel layer. Device reproducibility is enhanced by selectively passivating shallow traps at the interface using in situ H plasma treatment. The passivated memory device shows highly reproducible memory operation and on-state current during retention bake tests at 85 °C. One of the most significant advantages of this visible light-erasable oxide field-effect transistor-based nonvolatile memory is its simple structure, which is free from deterioration due to the frequent tunneling processes, as compared to conventional nonvolatile memory devices with tunneling oxides.

摘要

提出了一种具有深陷阱界面浮栅的无隧道氧化层非易失性存储器件的新概念。由于在沟道和栅介质层之间的界面处存在深陷阱,该器件表现出 10 的高导通/截止电流比和可观的存储窗口。有趣的是,用 400nm 光照射可以完全将编程状态恢复到初始状态(执行擦除过程),这归因于可见光敏感的沟道层。通过使用原位 H 等离子体处理选择性地钝化界面处的浅陷阱,可以提高器件的可重复性。在 85°C 的保留烘焙测试中,经过钝化的存储器件表现出高度可重复的存储操作和导通电流。与具有隧道氧化物的传统非易失性存储器件相比,基于可见光擦除氧化物场效应晶体管的非易失性存储器的最大优势之一是其简单的结构,它不受由于频繁的隧道过程而导致的劣化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验