Suppr超能文献

智能环境监测与评估技术(SEMAT)——低成本、远程水生环境监测的新模式。

Smart Environmental Monitoring and Assessment Technologies (SEMAT)-A New Paradigm for Low-Cost, Remote Aquatic Environmental Monitoring.

机构信息

School of Information and Communication Technology, Griffith University, Meadowbrook Logan 4131, Australia.

School of Earth and Environmental Science, University of Queensland, St Lucia Brisbane 4067, Australia.

出版信息

Sensors (Basel). 2018 Jul 12;18(7):2248. doi: 10.3390/s18072248.

Abstract

Expense and the logistical difficulties with deploying scientific monitoring equipment are the biggest limitations to undertaking large scale monitoring of aquatic environments. The Smart Environmental Monitoring and Assessment Technologies (SEMAT) project is aimed at addressing this problem by creating an open standard for low-cost, near real-time, remote aquatic environmental monitoring systems. This paper presents the latest refinement of the SEMAT system in-line with the evolution of existing technologies, inexpensive sensors and environmental monitoring expectations. We provide a systems analysis and design of the SEMAT remote monitoring units and the back-end data management system. The system's value is augmented through a unique e-waste recycling and repurposing model which engages/educates the community in the production of the SEMAT units using social enterprise. SEMAT serves as an open standard for the community to innovate around to further the state of play with low-cost environmental monitoring. The latest SEMAT units have been trialled in a peri-urban lake setting and the results demonstrate the system's capabilities to provide ongoing data in near real-time to validate an environmental model of the study site.

摘要

开展大规模水生环境监测的最大限制因素是费用和部署科学监测设备的后勤困难。Smart Environmental Monitoring and Assessment Technologies (SEMAT) 项目旨在通过创建低成本、近实时、远程水生环境监测系统的开放标准来解决这个问题。本文介绍了最新的 SEMAT 系统改进,以适应现有技术、廉价传感器和环境监测预期的发展。我们提供了 SEMAT 远程监测单元和后端数据管理系统的系统分析和设计。该系统的价值通过独特的电子废物回收和再利用模型得到增强,该模型利用社会企业让社区参与 SEMAT 单元的生产,从而进行教育。SEMAT 是社区围绕创新的开放标准,以推进低成本环境监测的现状。最新的 SEMAT 单元已经在城市周边湖泊环境中进行了试用,结果表明该系统能够实时提供持续的数据,以验证研究地点的环境模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac97/6068521/817088d03105/sensors-18-02248-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验