Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), École Polytechnique Fédérale de Lausanne, Station 6, 1015, Lausanne, Switzerland.
Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
Nat Commun. 2018 Jul 12;9(1):2694. doi: 10.1038/s41467-018-05021-x.
Light-electron interaction is the seminal ingredient in free-electron lasers and dynamical investigation of matter. Pushing the coherent control of electrons by light to the attosecond timescale and below would enable unprecedented applications in quantum circuits and exploration of electronic motions and nuclear phenomena. Here we demonstrate attosecond coherent manipulation of a free-electron wave function, and show that it can be pushed down to the zeptosecond regime. We make a relativistic single-electron wavepacket interact in free-space with a semi-infinite light field generated by two light pulses reflected from a mirror and delayed by fractions of the optical cycle. The amplitude and phase of the resulting electron-state coherent oscillations are mapped in energy-momentum space via momentum-resolved ultrafast electron spectroscopy. The experimental results are in full agreement with our analytical theory, which predicts access to the zeptosecond timescale by adopting semi-infinite X-ray pulses.
光电子相互作用是自由电子激光和物质动力学研究的基础。将光对电子的相干控制推向阿秒(atto second)及以下时间尺度,将在量子电路和电子运动及核现象的探索中实现前所未有的应用。在这里,我们展示了自由电子波函数的阿秒相干操纵,并表明它可以被推至zeptosecond(飞秒)范围。我们使相对论单电子波包与由两个从镜子反射并延迟光周期分数的光脉冲产生的半无限光场在自由空间中相互作用。通过动量分辨超快电子能谱,在能量-动量空间中绘制出电子态相干振荡的幅度和相位。实验结果与我们的分析理论完全一致,该理论预测通过采用半无限 X 射线脉冲可以达到zeptosecond 时间尺度。