Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.
Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
J Mol Biol. 2018 Sep 14;430(18 Pt A):2913-2923. doi: 10.1016/j.jmb.2018.07.004. Epub 2018 Jul 9.
A key challenge in precision medicine lies in understanding molecular-level underpinnings of complex human disease. Biological networks in multicellular organisms can generate hypotheses about disease genes, pathways, and their behavior in disease-related tissues. Diverse functional genomic data, including expression, protein-protein interaction, and relevant sequence and literature information, can be utilized to build integrative networks that provide both genome-wide coverage as well as contextual specificity and accuracy. By carefully extracting the relevant signal in thousands of heterogeneous functional genomics experiments through integrative analysis, these networks model how genes work together in specific contexts to carry out cellular processes, thereby contributing to a molecular-level understanding of complex human disease and paving the way toward better therapy and drug treatment. Here, we discuss current methods to build context-specific integrative networks, focusing on tissue-specific networks. We highlight applications of these networks in predicting tissue-specific molecular response, identifying candidate disease genes, and increasing power by amplifying the disease signal in quantitative genetics data. Altogether, these exciting developments enable biomedical scientists to characterize disease from pathophysiology to cellular system and, finally, to specific gene alterations-making significant strides toward the goal of precision medicine.
精准医学的一个关键挑战在于理解复杂人类疾病的分子层面基础。多细胞生物中的生物网络可以生成关于疾病基因、途径及其在疾病相关组织中行为的假设。多样化的功能基因组数据,包括表达、蛋白质-蛋白质相互作用以及相关的序列和文献信息,可用于构建整合网络,提供全基因组覆盖以及上下文特异性和准确性。通过在数千个异质功能基因组实验中通过整合分析仔细提取相关信号,这些网络可以模拟基因在特定环境中协同工作以执行细胞过程的方式,从而有助于从分子水平理解复杂的人类疾病,并为更好的治疗和药物治疗铺平道路。在这里,我们讨论了构建特定于上下文的整合网络的当前方法,重点是组织特异性网络。我们强调了这些网络在预测组织特异性分子反应、识别候选疾病基因以及通过在定量遗传学数据中放大疾病信号来提高功效方面的应用。总之,这些令人兴奋的发展使生物医学科学家能够从病理生理学到细胞系统再到特定基因改变来描述疾病,朝着精准医学的目标迈出了重要的一步。