College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
Int J Mol Sci. 2021 Mar 26;22(7):3425. doi: 10.3390/ijms22073425.
Molecular spectroscopy has been widely used to identify pesticides. The main limitation of this approach is the difficulty of identifying pesticides with similar molecular structures. When these pesticide residues are in trace and mixed states in plants, it poses great challenges for practical identification. This study proposed a state-of-the-art method for the rapid identification of trace (10 mg·L) and multiple similar benzimidazole pesticide residues on the surface of leaves, mainly including benzoyl (BNL), carbendazim (BCM), thiabendazole (TBZ), and their mixtures. The new method combines high-throughput terahertz (THz) imaging technology with a deep learning framework. To further improve the model reliability beyond the THz fingerprint peaks (BNL: 0.70, 1.07, 2.20 THz; BCM: 1.16, 1.35, 2.32 THz; TBZ: 0.92, 1.24, 1.66, 1.95, 2.58 THz), we extracted the absorption spectra in frequencies of 0.2-2.2 THz from images as the input to the deep convolution neural network (DCNN). Compared with fuzzy Sammon clustering and four back-propagation neural network (BPNN) models (TrainCGB, TrainCGF, TrainCGP, and TrainRP), DCNN achieved the highest prediction accuracies of 100%, 94.51%, 96.26%, 94.64%, 98.81%, 94.90%, 96.17%, and 96.99% for the control check group, BNL, BCM, TBZ, BNL + BCM, BNL + TBZ, BCM + TBZ, and BNL + BCM + TBZ, respectively. Taking advantage of THz imaging and DCNN, the image visualization of pesticide distribution and residue types on leaves was realized simultaneously. The results demonstrated that THz imaging and deep learning can be potentially adopted for rapid-sensing detection of trace multi-residues on leaf surfaces, which is of great significance for agriculture and food safety.
分子光谱学已被广泛用于识别农药。这种方法的主要限制是识别具有相似分子结构的农药的难度。当这些农药残留以痕量和混合状态存在于植物中时,对实际鉴定提出了巨大的挑战。本研究提出了一种快速识别叶片表面痕量(10mg·L)和多种类似苯并咪唑类农药残留的最新方法,主要包括苯甲酰(BNL)、多菌灵(BCM)、噻菌灵(TBZ)及其混合物。该新方法结合了高通量太赫兹(THz)成像技术和深度学习框架。为了进一步提高模型的可靠性,超越太赫兹指纹峰(BNL:0.70、1.07、2.20 THz;BCM:1.16、1.35、2.32 THz;TBZ:0.92、1.24、1.66、1.95、2.58 THz),我们从图像中提取了 0.2-2.2THz 频率的吸收光谱作为输入到深度卷积神经网络(DCNN)中。与模糊 Sammon 聚类和四个反向传播神经网络(BPNN)模型(TrainCGB、TrainCGF、TrainCGP 和 TrainRP)相比,DCNN 对控制检查组、BNL、BCM、TBZ、BNL+BCM、BNL+TBZ、BCM+TBZ、BNL+BCM+TBZ 的预测准确率分别达到了 100%、94.51%、96.26%、94.64%、98.81%、94.90%、96.17%和 96.99%。利用太赫兹成像和 DCNN,实现了叶片上农药分布和残留类型的图像可视化。结果表明,太赫兹成像和深度学习可用于快速感应检测叶片表面的痕量多残留,这对农业和食品安全具有重要意义。