Babino Lucia, Rotnitzky Andrea, Robins James
Instituto de Calculo, FCEN, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
Departamento de Economia, Universidad Torcuato Di Tella, Buenos Aires 1428, Argentina.
Biometrics. 2019 Mar;75(1):90-99. doi: 10.1111/biom.12924. Epub 2018 Jul 13.
We consider estimation, from longitudinal observational data, of the parameters of marginal structural mean models for unconstrained outcomes. Current proposals include inverse probability of treatment weighted and double robust (DR) estimators. A difficulty with DR estimation is that it requires postulating a sequence of models, one for the each mean of the counterfactual outcome given covariate and treatment history up to each exposure time point. Most natural models for such means are often incompatible. Robins et al., (2000b) proposed a parameterization of the likelihood which implies compatible parametric models for such means. Their parameterization has not been exploited to construct DR estimators and one goal of this article is to fill this gap. More importantly, exploiting this parameterization we propose a multiple robust (MR) estimator that confers even more protection against model misspecification than DR estimators. Our methods are easy to implement as they are based on the iterative fit of a sequence of weighted regressions.
我们考虑从纵向观察数据中估计无约束结果的边际结构均值模型的参数。目前的方法包括治疗加权逆概率和双重稳健(DR)估计器。DR估计的一个困难在于,它需要假定一系列模型,即针对给定协变量和直至每个暴露时间点的治疗史的反事实结果的每个均值各有一个模型。此类均值的大多数自然模型往往不兼容。罗宾斯等人(2000b)提出了一种似然参数化方法,该方法意味着此类均值的兼容参数模型。他们的参数化方法尚未被用于构建DR估计器,本文的一个目标就是填补这一空白。更重要的是,利用这种参数化方法,我们提出了一种多重稳健(MR)估计器,它比DR估计器能提供更多针对模型错误设定的保护。我们的方法易于实施,因为它们基于一系列加权回归的迭代拟合。