DTU Nanotech, Department of Micro- and Nanotechnology , Technical University of Denmark , 2800 Kongens Lyngby , Denmark.
Schepens Eye Research Institute, Massachusetts Eye and Ear , 20 Staniford Street , Boston , Massachusetts 02114 , United States.
ACS Nano. 2018 Aug 28;12(8):7497-7508. doi: 10.1021/acsnano.8b00596. Epub 2018 Jul 18.
A common event in optic neuropathies is the loss of axons and death of retinal ganglion cells (RGCs) resulting in irreversible blindness. Mammalian target of rapamycin (mTOR) signaling pathway agonists have been shown to foster axon regeneration and RGC survival in animal models of optic nerve damage. However, many challenges remain in developing therapies that exploit cell growth and tissue remodeling including (i) activating/inhibiting cell pathways synergistically, (ii) avoiding tumorigenesis, and (iii) ensuring appropriate physiological tissue function. These challenges are further exacerbated by the need to overcome ocular physiological barriers and clearance mechanisms. Here we present liposomes loaded with multiple mTOR pathway stimulating biologics designed to enhance neuroprotection after retina damage. Liposomes were loaded with ciliary neurotrophic factor, insulin-like growth factor 1, a lipopeptide N-fragment osteopontin mimic, and lipopeptide phosphatase tension homologue inhibitors for either the ATP domain or the c-terminal tail. In a mouse model of N-methyl-d-aspartic acid induced RGC death, a single intravitreal administration of liposomes reduced both RGC death and loss of retina electrophysiological function. Furthermore, combining liposomes with transplantation of induced pluripotent stem cell derived RGCs led to an improved electrophysiological outcome in mice. The results presented here show that liposomes carrying multiple signaling pathway modulators can facilitate neuroprotection and transplant electrophysiological outcome.
在视神经病变中,轴突丢失和视网膜神经节细胞 (RGC) 死亡是常见事件,导致不可逆转的失明。已证明哺乳动物雷帕霉素靶蛋白 (mTOR) 信号通路激动剂可促进视神经损伤动物模型中的轴突再生和 RGC 存活。然而,在开发利用细胞生长和组织重塑的疗法方面仍然存在许多挑战,包括 (i) 协同激活/抑制细胞途径,(ii) 避免肿瘤发生,以及 (iii) 确保适当的生理组织功能。这些挑战因需要克服眼部生理屏障和清除机制而进一步加剧。在这里,我们提出了负载多种 mTOR 通路刺激生物制剂的脂质体,旨在增强视网膜损伤后的神经保护作用。脂质体负载睫状神经营养因子、胰岛素样生长因子 1、骨桥蛋白模拟的脂肽 N 片段和脂肽磷酸酶张力同源物抑制剂,用于 ATP 结构域或 C 末端尾巴。在 N-甲基-D-天冬氨酸诱导的 RGC 死亡的小鼠模型中,单次玻璃体内给予脂质体可减少 RGC 死亡和视网膜电生理功能丧失。此外,将脂质体与诱导多能干细胞衍生的 RGC 移植相结合,可改善小鼠的电生理结果。本文的结果表明,携带多种信号通路调节剂的脂质体可以促进神经保护和移植的电生理结果。