Institut für Angewandte Physik, Technische Universität Darmstadt, Schlossgartenstrasse 7, D-64289 Darmstadt, Germany.
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany.
Phys Rev Lett. 2018 Jun 29;120(26):263003. doi: 10.1103/PhysRevLett.120.263003.
One of the most important atomic properties governing an element's chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626 21±0.000 05 eV. This work provides a stringent benchmark for state-of-the-art many-body atomic modeling that considers relativistic and quantum electrodynamic effects and paves the way for high-precision measurements of atomic properties of elements only available from heavy-ion accelerator facilities.
原子的一个最重要的属性是控制元素化学行为的能量,该能量用于去除其最外层电子,这被称为第一电离势。对于最重的元素,这个基本数量受到相对论效应的强烈影响,导致了独特的化学性质。在逐个原子的尺度上发展了激光光谱学,并将其应用于探测中性镎在电离阈值附近的光学光谱。这里从收敛的测量里德伯系列非常精确地确定了镎的第一电离势,为 6.626 21±0.000 05 eV。这项工作为考虑相对论和量子电动力学效应的最先进的多体原子建模提供了严格的基准,并为仅可从重离子加速器设施获得的元素的高精度原子性质测量铺平了道路。