Suppr超能文献

用逐原子激光共振电离光谱法研究锘元素。

Atom-at-a-time laser resonance ionization spectroscopy of nobelium.

机构信息

Helmholtz-Institut Mainz, Staudingerweg 18, D-55128 Mainz, Germany.

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany.

出版信息

Nature. 2016 Oct 27;538(7626):495-498. doi: 10.1038/nature19345. Epub 2016 Sep 28.

Abstract

Optical spectroscopy of a primordial isotope has traditionally formed the basis for understanding the atomic structure of an element. Such studies have been conducted for most elements and theoretical modelling can be performed to high precision, taking into account relativistic effects that scale approximately as the square of the atomic number. However, for the transfermium elements (those with atomic numbers greater than 100), the atomic structure is experimentally unknown. These radioactive elements are produced in nuclear fusion reactions at rates of only a few atoms per second at most and must be studied immediately following their production, which has so far precluded their optical spectroscopy. Here we report laser resonance ionization spectroscopy of nobelium (No; atomic number 102) in single-atom-at-a-time quantities, in which we identify the ground-state transition SP. By combining this result with data from an observed Rydberg series, we obtain an upper limit for the ionization potential of nobelium. These accurate results from direct laser excitations of outer-shell electrons cannot be achieved using state-of-the-art relativistic many-body calculations that include quantum electrodynamic effects, owing to large uncertainties in the modelled transition energies of the complex systems under consideration. Our work opens the door to high-precision measurements of various atomic and nuclear properties of elements heavier than nobelium, and motivates future theoretical work.

摘要

传统上,对原始同位素的光学光谱研究一直是理解元素原子结构的基础。大多数元素都进行了这样的研究,并且可以进行高精度的理论建模,考虑到相对论效应,这些效应大约与原子序数的平方成正比。然而,对于超重元素(原子序数大于 100 的元素),其原子结构在实验上是未知的。这些放射性元素在核聚变反应中以每秒最多只有几个原子的速率产生,并且必须在它们产生后立即进行研究,这迄今为止排除了它们的光学光谱研究。在这里,我们报告了单个原子逐个进行的铹(No;原子序数 102)的激光共振电离光谱研究,其中我们确定了基态跃迁 SP。通过将这一结果与观察到的里德堡系列数据相结合,我们获得了铹的电离势的上限。由于所考虑的复杂系统的模拟跃迁能量存在较大不确定性,因此,即使使用包括量子电动力学效应的最先进的相对论多体计算,也无法实现对外层电子的直接激光激发的这种精确结果。我们的工作为测量比铹更重的元素的各种原子和核性质的高精度测量打开了大门,并激发了未来的理论工作。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验