Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
Cell. 2018 Jul 12;174(2):300-311.e11. doi: 10.1016/j.cell.2018.06.026.
Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for immune responses to pathogen replication, cellular stress, and cancer. Existing structures of the mouse cGAS-DNA complex provide a model for enzyme activation but do not explain why human cGAS exhibits severely reduced levels of cyclic GMP-AMP (cGAMP) synthesis compared to other mammals. Here, we discover that enhanced DNA-length specificity restrains human cGAS activation. Using reconstitution of cGAMP signaling in bacteria, we mapped the determinant of human cGAS regulation to two amino acid substitutions in the DNA-binding surface. Human-specific substitutions are necessary and sufficient to direct preferential detection of long DNA. Crystal structures reveal why removal of human substitutions relaxes DNA-length specificity and explain how human-specific DNA interactions favor cGAS oligomerization. These results define how DNA-sensing in humans adapted for enhanced specificity and provide a model of the active human cGAS-DNA complex to enable structure-guided design of cGAS therapeutics.
环鸟苷酸-腺苷酸合酶 (cGAS) 识别细胞溶质 DNA 对于免疫反应病原体复制、细胞应激和癌症至关重要。现有的小鼠 cGAS-DNA 复合物结构为酶激活提供了模型,但不能解释为什么与其他哺乳动物相比,人 cGAS 表现出严重降低的环鸟苷酸-腺苷酸 (cGAMP) 合成水平。在这里,我们发现增强的 DNA 长度特异性限制了人 cGAS 的激活。我们使用细菌中 cGAMP 信号的重建,将人 cGAS 调节的决定因素映射到 DNA 结合表面的两个氨基酸取代上。人类特异性取代是必需和充分的,以指导对长 DNA 的优先检测。晶体结构揭示了为什么去除人类取代物可以放宽 DNA 长度特异性,并解释了为什么人类特异性 DNA 相互作用有利于 cGAS 寡聚化。这些结果定义了人类中 DNA 感应如何适应增强的特异性,并提供了活性人 cGAS-DNA 复合物的模型,以实现基于结构的 cGAS 治疗药物的设计。