Suppr超能文献

量化色谱-质谱分析数据中运行顺序的影响。

Quantification of run order effect on chromatography - mass spectrometry profiling data.

机构信息

Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87 Umeå, Sweden.

Sartorius Stedim Data Analytics, Tvistevägen 48, 907 36 Umeå, Sweden.

出版信息

J Chromatogr A. 2018 Sep 21;1568:229-234. doi: 10.1016/j.chroma.2018.07.019. Epub 2018 Jul 5.

Abstract

Chromatographic systems coupled with mass spectrometry detection are widely used in biological studies investigating how levels of biomolecules respond to different internal and external stimuli. Such changes are normally expected to be of low magnitude and therefore all experimental factors that can influence the analysis need to be understood and minimized. Run order effect is commonly observed and constitutes a major challenge in chromatography-mass spectrometry based profiling studies that needs to be addressed before the biological evaluation of measured data is made. So far there is no established consensus, metric or method that quickly estimates the size of this effect. In this paper we demonstrate how orthogonal projections to latent structures (OPLS®) can be used for objective quantification of the run order effect in profiling studies. The quantification metric is expressed as the amount of variation in the experimental data that is correlated to the run order. One of the primary advantages with this approach is that it provides a fast way of quantifying run-order effect for all detected features, not only internal standards. Results obtained from quantification of run order effect as provided by the OPLS can be used in the evaluation of data normalization, support the optimization of analytical protocols and identification of compounds highly influenced by instrumental drift. The application of OPLS for quantification of run order is demonstrated on experimental data from plasma profiling performed on three analytical platforms: GCMS metabolomics, LCMS metabolomics and LCMS lipidomics.

摘要

色谱系统与质谱检测相结合,广泛应用于研究生物分子如何响应不同内部和外部刺激的生物学研究。这些变化通常预期幅度较小,因此需要了解和最小化所有可能影响分析的实验因素。运行顺序效应在基于色谱-质谱的分析研究中很常见,需要在对测量数据进行生物学评估之前加以解决。到目前为止,还没有建立一种快速估计这种影响大小的共识、指标或方法。在本文中,我们展示了正交投影到潜在结构(OPLS®)如何用于对轮廓研究中的运行顺序效应进行客观量化。该量化指标表示与运行顺序相关的实验数据中的变化量。这种方法的一个主要优点是,它提供了一种快速量化所有检测到的特征的运行顺序效应的方法,而不仅仅是内标。通过 OPLS 提供的运行顺序效应定量获得的结果可用于数据归一化的评估、分析协议的优化以及确定受仪器漂移影响较大的化合物。我们将 OPLS 应用于在三个分析平台上进行的血浆分析研究中的实验数据:GCMS 代谢组学、LCMS 代谢组学和 LCMS 脂质组学,以演示运行顺序的定量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验