Detmar Eric, Müller Valentin, Zell Daniel, Ackermann Lutz, Breugst Martin
Department für Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany.
Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.
Beilstein J Org Chem. 2018 Jun 25;14:1537-1545. doi: 10.3762/bjoc.14.130. eCollection 2018.
Carboxylate-assisted cobalt(III)-catalyzed C-H cyanations are highly efficient processes for the synthesis of (hetero)aromatic nitriles. We have now analyzed the cyanation of differently substituted 2-phenylpyridines in detail computationally by density functional theory and also experimentally. Based on our investigations, we propose a plausible reaction mechanism for this transformation that is in line with the experimental observations. Additional calculations, including NCIPLOT, dispersion interaction densities, and local energy decomposition analysis, for the model cyanation of 2-phenylpyridine furthermore highlight that London dispersion is an important factor that enables this challenging C-H transformation. Nonbonding interactions between the Cp* ligand and aromatic and C-H-rich fragments of other ligands at the cobalt center significantly contribute to a stabilization of cobalt intermediates and transition states.
羧酸盐辅助的钴(III)催化的C-H氰化反应是合成(杂)芳族腈的高效方法。我们现在通过密度泛函理论并结合实验,对不同取代的2-苯基吡啶的氰化反应进行了详细的计算分析。基于我们的研究,我们提出了一种与实验观察结果相符的、合理的该转化反应机理。此外,针对2-苯基吡啶的模型氰化反应进行的包括NCIPLOT、色散相互作用密度和局部能量分解分析在内的额外计算,进一步突出了伦敦色散是实现这一具有挑战性的C-H转化的重要因素。钴中心处Cp*配体与其他配体的芳族和富含C-H片段之间的非键相互作用,对钴中间体和过渡态的稳定化有显著贡献。