Suppr超能文献

神经形态系统中的峰值基本运动检测器

Spiking Elementary Motion Detector in Neuromorphic Systems.

作者信息

Milde M B, Bertrand O J N, Ramachandran H, Egelhaaf M, Chicca E

机构信息

Institute of Neuroinformatics, University of Zurich, and ETH Zurich, 8057 Zurich, Switzerland

Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, and Cognitive Interaction Technology, Center of Excellence, Bielefeld University, 33501 Bielefeld, Germany

出版信息

Neural Comput. 2018 Sep;30(9):2384-2417. doi: 10.1162/neco_a_01112. Epub 2018 Jul 18.

Abstract

Apparent motion of the surroundings on an agent's retina can be used to navigate through cluttered environments, avoid collisions with obstacles, or track targets of interest. The pattern of apparent motion of objects, (i.e., the optic flow), contains spatial information about the surrounding environment. For a small, fast-moving agent, as used in search and rescue missions, it is crucial to estimate the distance to close-by objects to avoid collisions quickly. This estimation cannot be done by conventional methods, such as frame-based optic flow estimation, given the size, power, and latency constraints of the necessary hardware. A practical alternative makes use of event-based vision sensors. Contrary to the frame-based approach, they produce so-called events only when there are changes in the visual scene. We propose a novel asynchronous circuit, the spiking elementary motion detector (sEMD), composed of a single silicon neuron and synapse, to detect elementary motion from an event-based vision sensor. The sEMD encodes the time an object's image needs to travel across the retina into a burst of spikes. The number of spikes within the burst is proportional to the speed of events across the retina. A fast but imprecise estimate of the time-to-travel can already be obtained from the first two spikes of a burst and refined by subsequent interspike intervals. The latter encoding scheme is possible due to an adaptive nonlinear synaptic efficacy scaling. We show that the sEMD can be used to compute a collision avoidance direction in the context of robotic navigation in a cluttered outdoor environment and compared the collision avoidance direction to a frame-based algorithm. The proposed computational principle constitutes a generic spiking temporal correlation detector that can be applied to other sensory modalities (e.g., sound localization), and it provides a novel perspective to gating information in spiking neural networks.

摘要

智能体视网膜上周围环境的表观运动可用于在杂乱环境中导航、避免与障碍物碰撞或跟踪感兴趣的目标。物体表观运动的模式(即光流)包含有关周围环境的空间信息。对于搜索和救援任务中使用的小型快速移动智能体而言,估计与附近物体的距离以快速避免碰撞至关重要。鉴于所需硬件的尺寸、功率和延迟限制,无法通过传统方法(如基于帧的光流估计)来进行这种估计。一种实用的替代方法是使用基于事件的视觉传感器。与基于帧的方法相反,它们仅在视觉场景发生变化时才产生所谓的事件。我们提出了一种新颖的异步电路,即脉冲基本运动检测器(sEMD),它由单个硅神经元和突触组成,用于从基于事件的视觉传感器检测基本运动。sEMD将物体图像穿过视网膜所需的时间编码为一串脉冲。脉冲串中的脉冲数量与事件在视网膜上的速度成正比。从脉冲串的前两个脉冲已经可以获得对行进时间的快速但不精确的估计,并通过后续的脉冲间隔进行细化。由于自适应非线性突触效能缩放,后一种编码方案是可行的。我们表明,sEMD可用于在杂乱的室外环境中的机器人导航背景下计算避撞方向,并将避撞方向与基于帧的算法进行比较。所提出的计算原理构成了一种通用的脉冲时间相关检测器,可应用于其他感官模态(如声音定位),并且它为脉冲神经网络中的门控信息提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验