Suppr超能文献

一位用于机器人绘画的神经形态电子艺术家。

A neuromorphic electronic artist for robotic painting.

作者信息

Schürmann Lioba, D'Angelo Giulia, Grayver Liat, Bartolozzi Chiara, Indiveri Giacomo

机构信息

Institute of Neuroinformatics, University of Zurich and ETH, Zurich, Switzerland.

Event-Driven Perception for Robotics, Italian Institute of Technology, Genoa, Italy.

出版信息

Sci Rep. 2025 Jun 4;15(1):19561. doi: 10.1038/s41598-025-92081-x.

Abstract

Recent advances in deep learning have sparked interest in AI-generated art, including robot-assisted painting. Traditional painting machines use static images and offline processing without considering the dynamic nature of painting. Neuromorphic cameras, which capture light intensity changes through asynchronous events, and mixed-signal neuromorphic processors, which implement biologically plausible spiking neural networks, offer a promising alternative. In this work, we present a robotic painting system comprising a 6-DOF robotic arm, event-based input from a Dynamic Vision Sensor (DVS) camera and a neuromorphic processor to produce dynamic brushstrokes, and tactile feedback from a force-torque sensor to compensate for brush deformation. The system receives DVS events representing the desired brushstroke trajectory and maps these events onto the processor's neurons to compute joint velocities in close-loop. The variability in the input's noisy event streams and the processor's analog circuits reproduces the heterogeneity of human brushstrokes. Tested in a real-world setting, the system successfully generated diverse physical brushstrokes. This network marks a first step towards a fully spiking robotic controller with ultra-low latency responsiveness, applicable to any robotic task requiring real-time closed-loop adaptive control.

摘要

深度学习的最新进展引发了人们对人工智能生成艺术的兴趣,包括机器人辅助绘画。传统的绘画机器使用静态图像和离线处理,而不考虑绘画的动态特性。通过异步事件捕捉光强变化的神经形态相机,以及实现具有生物合理性的脉冲神经网络的混合信号神经形态处理器,提供了一种很有前景的替代方案。在这项工作中,我们展示了一种机器人绘画系统,该系统包括一个六自由度机器人手臂、来自动态视觉传感器(DVS)相机的基于事件的输入和一个神经形态处理器,用于产生动态笔触,以及来自力-扭矩传感器的触觉反馈,以补偿画笔变形。该系统接收表示所需笔触轨迹的DVS事件,并将这些事件映射到处理器的神经元上,以闭环方式计算关节速度。输入的噪声事件流和处理器的模拟电路中的变化再现了人类笔触的异质性。在实际环境中进行测试时,该系统成功生成了各种物理笔触。这个网络标志着朝着具有超低延迟响应能力的全脉冲机器人控制器迈出了第一步,适用于任何需要实时闭环自适应控制的机器人任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/238a/12137699/117bf4ea0112/41598_2025_92081_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验