Beltran-Huarac Juan, Zhang Zhenyuan, Pyrgiotakis Georgios, DeLoid Glen, Vaze Nachiket, Hussain Saber M, Demokritou Philip
Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public School, Harvard University, Boston, MA 02115, USA.
Molecular Bioeffects Branch, Airman Systems Directorate, Wright Patterson Air Force Base, Dayton, OH, USA.
NanoImpact. 2018 Apr;10:26-37. doi: 10.1016/j.impact.2017.11.007. Epub 2017 Dec 2.
There is a growing need to develop and characterize reference metal and metal oxide engineered nanomaterials (ENMs) of high purity and tunable intrinsic properties suitable for nanotoxicology research. Here a high throughput (volume) and precision flame spray pyrolysis (FSP) approach coupled with state-of-the-art characterization techniques are utilized to generate such reference ENMs. The lab-based and industrially relevant FSP system, termed as Versatile Engineered Nanomaterials Generation System (VENGES), synthesizes the metals and metal oxides, at high throughput manner with controlled properties, such as primary particle size, aggregate diameter, shape, crystallinity, stoichiometry and surface chemistry. A nanopanel of nine reference ENMs (silica, silver, silver supported on silica, alumina, ceria and iron oxide) was synthesized and characterized using combined electron microscopy, advanced spectroscopic techniques and physical analyses (, BET, XRD, TEM, pycnometry, XPS, ICP-MS and FTIR). ENMs show a high degree of chemical purity and stoichiometry, and low content of carbon residuals, and are sterile and free of bacteria and endotoxins. Further, their colloidal properties and their implication in dosimetry have been also investigated in both environmental and test biological media. The suitability of reference ENMs and protocols developed in this study brings forth new arenas to generate reliable and reproducible toxicological data in an effort to reduce conflicting and contradicting inter-laboratory data on relative toxic effects of ENMs.
开发和表征高纯度且具有可调节固有特性的参考金属及金属氧化物工程纳米材料(ENM)的需求日益增长,这些材料适用于纳米毒理学研究。在此,采用高通量(大容量)和精确的火焰喷雾热解(FSP)方法并结合最先进的表征技术来生成此类参考ENM。基于实验室且与工业相关的FSP系统,称为通用工程纳米材料生成系统(VENGES),以高通量方式合成金属和金属氧化物,其特性可控,如一次粒径、聚集体直径、形状、结晶度、化学计量比和表面化学性质。合成了包含九种参考ENM的纳米材料组(二氧化硅、银、负载在二氧化硅上的银、氧化铝、二氧化铈和氧化铁),并使用组合电子显微镜、先进光谱技术和物理分析方法(BET、XRD、TEM、比重瓶法、XPS、ICP-MS和FTIR)对其进行表征。ENM显示出高度的化学纯度和化学计量比,碳残留量低,且无菌、无细菌和内毒素。此外,还在环境介质和测试生物介质中研究了它们的胶体性质及其在剂量学中的意义。本研究中开发的参考ENM和方案的适用性开辟了新领域,以生成可靠且可重复的毒理学数据,从而减少关于ENM相对毒性效应的实验室间相互矛盾的数据。