Glaubitz Christina, Rothen-Rutishauser Barbara, Lattuada Marco, Balog Sandor, Petri-Fink Alke
Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
Chemistry Department, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
Nanoscale. 2022 Sep 15;14(35):12940-12950. doi: 10.1039/d2nr03240f.
Ultrasonication is a widely used and standardized method to redisperse nanopowders in liquids and to homogenize nanoparticle dispersions. One goal of sonication is to disrupt agglomerates without changing the intrinsic physicochemical properties of the primary particles. The outcome of sonication, however, is most of the time uncertain, and quantitative models have been beyond reach. The magnitude of this problem is considerable owing to fact that the efficiency of sonication is not only dependent on the parameters of the actual device, but also on the physicochemical properties such as of the particle dispersion itself. As a consequence, sonication suffers from poor reproducibility. To tackle this problem, we propose to involve machine learning. By focusing on four nanoparticle types in aqueous dispersions, we combine supervised machine learning and dynamic light scattering to analyze the aggregate size after sonication, and demonstrate the potential to improve considerably the design and reproducibility of sonication experiments.
超声处理是一种广泛使用的标准化方法,用于在液体中重新分散纳米粉末并使纳米颗粒分散体均匀化。超声处理的一个目标是破坏团聚体,同时不改变初级颗粒的固有物理化学性质。然而,超声处理的结果在大多数情况下是不确定的,定量模型也难以实现。由于超声处理的效率不仅取决于实际设备的参数,还取决于颗粒分散体本身等物理化学性质,这个问题的严重程度相当大。因此,超声处理的可重复性较差。为了解决这个问题,我们建议引入机器学习。通过关注水性分散体中的四种纳米颗粒类型,我们将监督机器学习和动态光散射相结合,以分析超声处理后的聚集体尺寸,并展示了显著改善超声处理实验设计和可重复性的潜力。