Suppr超能文献

骨再生策略:工程支架、生物活性分子和干细胞的当前阶段和未来展望。

Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives.

机构信息

Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France.

Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium.

出版信息

Biomaterials. 2018 Oct;180:143-162. doi: 10.1016/j.biomaterials.2018.07.017. Epub 2018 Jul 11.

Abstract

Bone fractures are the most common traumatic injuries in humans. The repair of bone fractures is a regenerative process that recapitulates many of the biological events of embryonic skeletal development. Most of the time it leads to successful healing and the recovery of the damaged bone. Unfortunately, about 5-10% of fractures will lead to delayed healing or non-union, more so in the case of co-morbidities such as diabetes. In this article, we review the different strategies to heal bone defects using synthetic bone graft substitutes, biologically active substances and stem cells. The majority of currently available reviews focus on strategies that are still at the early stages of development and use mostly in vitro experiments with cell lines or stem cells. Here, we focus on what is already implemented in the clinics, what is currently in clinical trials, and what has been tested in animal models. Treatment approaches can be classified in three major categories: i) synthetic bone graft substitutes (BGS) whose architecture and surface can be optimized; ii) BGS combined with bioactive molecules such as growth factors, peptides or small molecules targeting bone precursor cells, bone formation and metabolism; iii) cell-based strategies with progenitor cells combined or not with active molecules that can be injected or seeded on BGS for improved delivery. We review the major types of adult stromal cells (bone marrow, adipose and periosteum derived) that have been used and compare their properties. Finally, we discuss the remaining challenges that need to be addressed to significantly improve the healing of bone defects.

摘要

骨折是人类最常见的外伤性损伤。骨折的修复是一个再生过程,它再现了胚胎骨骼发育的许多生物学事件。大多数情况下,它会导致成功愈合和受损骨骼的恢复。不幸的是,大约 5-10%的骨折会导致延迟愈合或不愈合,在合并症如糖尿病的情况下更是如此。在本文中,我们综述了使用合成骨移植物替代物、生物活性物质和干细胞来治疗骨缺损的不同策略。目前大多数可用的综述都集中在仍处于早期发展阶段的策略上,并且主要使用细胞系或干细胞进行体外实验。在这里,我们关注的是已经在临床上实施的、正在临床试验中的以及已经在动物模型中测试过的方法。治疗方法可以分为三大类:i)合成骨移植物替代物(BGS),其结构和表面可以进行优化;ii)BGS 与生物活性分子如生长因子、肽或针对骨前体细胞、骨形成和代谢的小分子结合;iii)基于细胞的策略,使用祖细胞与或不与可注射或接种于 BGS 以改善递送的活性分子结合。我们综述了已经使用过的主要类型的成人基质细胞(骨髓、脂肪和骨膜来源),并比较了它们的特性。最后,我们讨论了需要解决的剩余挑战,以显著改善骨缺损的愈合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f42c/6710094/5735d441b8bf/EMS84042-f001.jpg

相似文献

9
Periosteal Tissue Engineering: Current Developments and Perspectives.骨膜组织工程:当前的发展和展望。
Adv Healthc Mater. 2021 Jun;10(12):e2100215. doi: 10.1002/adhm.202100215. Epub 2021 May 3.

引用本文的文献

本文引用的文献

1
3D Fabrication of Polymeric Scaffolds for Regenerative Therapy.用于再生治疗的聚合物支架的3D制造
ACS Biomater Sci Eng. 2017 Jul 10;3(7):1175-1194. doi: 10.1021/acsbiomaterials.6b00370. Epub 2017 Jan 5.
2
Multiscale Porosity Directs Bone Regeneration in Biphasic Calcium Phosphate Scaffolds.多尺度孔隙率引导双相磷酸钙支架中的骨再生。
ACS Biomater Sci Eng. 2017 Nov 13;3(11):2768-2778. doi: 10.1021/acsbiomaterials.6b00632. Epub 2016 Dec 13.
3
Fabrication Aspects of Porous Biomaterials in Orthopedic Applications: A Review.骨科应用中多孔生物材料的制备方面:综述
ACS Biomater Sci Eng. 2018 Jan 8;4(1):1-39. doi: 10.1021/acsbiomaterials.7b00615. Epub 2017 Dec 12.
6
Bone defect animal models for testing efficacy of bone substitute biomaterials.用于测试骨替代生物材料功效的骨缺损动物模型。
J Orthop Translat. 2015 Jun 16;3(3):95-104. doi: 10.1016/j.jot.2015.05.002. eCollection 2015 Jul.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验