Suppr超能文献

Langmuir-Blodgett 程序精确控制功能化原子力显微镜悬臂的覆盖范围用于 SMFS 测量:纤维素纳米晶体的应用。

Langmuir-Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: Application with Cellulose Nanocrystals.

机构信息

FARE Laboratory , INRA, Université de Reims Champagne-Ardenne , 51100 , Reims , France.

Laboratoire de Recherche en Nanosciences LRN EA4682 , Université de Reims Champagne-Ardenne , 51100 , Reims , France.

出版信息

Langmuir. 2018 Aug 14;34(32):9376-9386. doi: 10.1021/acs.langmuir.8b01892. Epub 2018 Aug 2.

Abstract

Atomic force microscopy (AFM) experiments with functionalized tips are currently one of the most powerful tools to locally measure adhesion forces via single-molecule force spectroscopy (SMFS) measurements. The main difficulty is to precisely control the attachment of biomolecules to the cantilever. Different chemistry procedures have been developed including the use of spacer molecules. Even if a process works well for small biomolecules such as antibodies, issues remain regarding nanoparticles or larger objects such as cellulose nanocrystals because it is difficult to precisely control their coverage and homogeneity. In this work, an original procedure based on the Langmuir-Blodgett (LB) technique was implemented for lever functionalization with cellulose nanocrystals and compared with classical chemical strategies. LB shows to be almost 6.0-fold more efficient than chemical procedure in terms of cellulose nanocrystals coverage attachment. Moreover, the LB technology provides advantage of not requiring linker molecules, which could have detrimental effects such as overestimation of the interaction force. The structural characterization and SMFS measurements of lignocellulosic polymers show that this strategy enables the precise control of the lever coverage, which improves the accuracy of the adhesion measurements. Such methodology is expected to strongly impact the AFM tip/tipless functionalization and SMFS measurements in different fields.

摘要

原子力显微镜(AFM)实验与功能化尖端是目前最强大的工具之一,可通过单分子力谱(SMFS)测量来局部测量粘附力。主要的困难是精确控制生物分子与悬臂的附着。已经开发了不同的化学程序,包括使用间隔分子。即使对于抗体等小分子,该过程的效果很好,但对于纳米颗粒或纤维素纳米晶体等较大的物体,仍存在问题,因为难以精确控制它们的覆盖度和均一性。在这项工作中,实施了一种基于 Langmuir-Blodgett(LB)技术的原始程序,用于纤维素纳米晶体的杠杆功能化,并与经典化学策略进行了比较。LB 在纤维素纳米晶体的覆盖度附着方面比化学程序的效率高约 6.0 倍。此外,LB 技术具有不需要连接分子的优势,这可能会产生不利影响,例如高估相互作用力。木质纤维素聚合物的结构表征和 SMFS 测量表明,这种策略能够精确控制杠杆的覆盖度,从而提高粘附测量的准确性。这种方法有望在不同领域中强烈影响 AFM 尖端/无尖端的功能化和 SMFS 测量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验