Suppr超能文献

基于卷积神经网络的超声图像乳腺病变组织学分类计算机辅助诊断方案

Computer-Aided Diagnosis Scheme for Determining Histological Classification of Breast Lesions on Ultrasonographic Images Using Convolutional Neural Network.

作者信息

Hizukuri Akiyoshi, Nakayama Ryohei

机构信息

Department of Electronic and Computer Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.

出版信息

Diagnostics (Basel). 2018 Jul 25;8(3):48. doi: 10.3390/diagnostics8030048.

Abstract

It can be difficult for clinicians to accurately discriminate among histological classifications of breast lesions on ultrasonographic images. The purpose of this study was to develop a computer-aided diagnosis (CADx) scheme for determining histological classifications of breast lesions using a convolutional neural network (CNN). Our database consisted of 578 breast ultrasonographic images. It included 287 malignant (217 invasive carcinomas and 70 noninvasive carcinomas) and 291 benign lesions (111 cysts and 180 fibroadenomas). In this study, the CNN constructed from four convolutional layers, three batch-normalization layers, four pooling layers, and two fully connected layers was employed for distinguishing between the four different types of histological classifications for lesions. The classification accuracies for histological classifications with our CNN model were 83.9⁻87.6%, which were substantially higher than those with our previous method (55.7⁻79.3%) using hand-crafted features and a classifier. The area under the curve with our CNN model was 0.976, whereas that with our previous method was 0.939 ( = 0.0001). Our CNN model would be useful in differential diagnoses of breast lesions as a diagnostic aid.

摘要

临床医生很难在超声图像上准确区分乳腺病变的组织学分类。本研究的目的是开发一种利用卷积神经网络(CNN)确定乳腺病变组织学分类的计算机辅助诊断(CADx)方案。我们的数据库由578幅乳腺超声图像组成。其中包括287例恶性病变(217例浸润性癌和70例非浸润性癌)和291例良性病变(111例囊肿和180例纤维腺瘤)。在本研究中,由四个卷积层、三个批归一化层、四个池化层和两个全连接层构建的CNN用于区分病变的四种不同类型的组织学分类。我们的CNN模型对组织学分类的准确率为83.9%-87.6%,显著高于我们之前使用手工特征和分类器的方法(55.7%-79.3%)。我们的CNN模型的曲线下面积为0.976,而我们之前方法的曲线下面积为0.9.39(P=0.0001)。我们的CNN模型作为一种诊断辅助手段,在乳腺病变的鉴别诊断中将会很有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验