Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
Department of Radiology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
J Digit Imaging. 2020 Apr;33(2):497-503. doi: 10.1007/s10278-019-00264-6.
Whole-heart coronary magnetic resonance angiography (WHCMRA) permits the noninvasive assessment of coronary artery disease without radiation exposure. However, the image resolution of WHCMRA is limited. Recently, convolutional neural networks (CNNs) have obtained increased interest as a method for improving the resolution of medical images. The purpose of this study is to improve the resolution of WHCMRA images using a CNN. Free-breathing WHCMRA images with 512 × 512 pixels (pixel size = 0.65 mm) were acquired in 80 patients with known or suspected coronary artery disease using a 1.5 T magnetic resonance (MR) system with 32 channel coils. A CNN model was optimized by evaluating CNNs with different structures. The proposed CNN model was trained based on the relationship of signal patterns between low-resolution patches (small regions) and the corresponding high-resolution patches using a training dataset collected from 40 patients. Images with 512 × 512 pixels were restored from 256 × 256 down-sampled WHCMRA images (pixel size = 1.3 mm) with three different approaches: the proposed CNN, bicubic interpolation (BCI), and the previously reported super-resolution CNN (SRCNN). High-resolution WHCMRA images obtained using the proposed CNN model were significantly better than those of BCI and SRCNN in terms of root mean squared error, peak signal to noise ratio, and structure similarity index measure with respect to the original WHCMRA images. The proposed CNN approach can provide high-resolution WHCMRA images with better accuracy than BCI and SRCNN. The high-resolution WHCMRA obtained using the proposed CNN model will be useful for identifying coronary artery disease.
全心冠状动脉磁共振血管造影术(WHCMRA)可在不进行辐射暴露的情况下,对冠状动脉疾病进行无创评估。然而,WHCMRA 的图像分辨率有限。最近,卷积神经网络(CNN)作为一种提高医学图像分辨率的方法引起了越来越多的关注。本研究旨在使用 CNN 来提高 WHCMRA 图像的分辨率。使用配备 32 通道线圈的 1.5T 磁共振(MR)系统,对 80 例已知或疑似冠状动脉疾病患者进行了 512×512 像素(像素大小=0.65mm)的自由呼吸 WHCMRA 图像采集。通过评估具有不同结构的 CNN 来优化 CNN 模型。基于低分辨率斑块(小区域)与相应高分辨率斑块之间的信号模式关系,使用从 40 例患者中收集的训练数据集对所提出的 CNN 模型进行训练。使用三种不同的方法从 256×256 下采样 WHCMRA 图像(像素大小=1.3mm)中恢复出 512×512 像素的图像:所提出的 CNN、双三次插值(BCI)和先前报道的超分辨率 CNN(SRCNN)。与 BCI 和 SRCNN 相比,所提出的 CNN 模型获得的高分辨率 WHCMRA 图像在原始 WHCMRA 图像的均方根误差、峰值信噪比和结构相似性指数测量方面具有显著优势。与 BCI 和 SRCNN 相比,所提出的 CNN 方法可以提供具有更高准确性的高分辨率 WHCMRA 图像。所提出的 CNN 模型获得的高分辨率 WHCMRA 将有助于识别冠状动脉疾病。