Suppr超能文献

基于改进的频切片小波变换和卷积神经网络的心房颤动波识别。

Atrial Fibrillation Beat Identification Using the Combination of Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks.

机构信息

School of Control Science and Engineering, Shandong University, Jinan 250061, China.

School of Information Science and Engineering, Fujian University of Technology, Fuzhou 350118, China.

出版信息

J Healthc Eng. 2018 Jul 2;2018:2102918. doi: 10.1155/2018/2102918. eCollection 2018.

Abstract

Atrial fibrillation (AF) is a serious cardiovascular disease with the phenomenon of beating irregularly. It is the major cause of variety of heart diseases, such as myocardial infarction. Automatic AF beat detection is still a challenging task which needs further exploration. A new framework, which combines modified frequency slice wavelet transform (MFSWT) and convolutional neural networks (CNNs), was proposed for automatic AF beat identification. MFSWT was used to transform 1 s electrocardiogram (ECG) segments to time-frequency images, and then, the images were fed into a 12-layer CNN for feature extraction and AF/non-AF beat classification. The results on the MIT-BIH Atrial Fibrillation Database showed that a mean accuracy (Acc) of 81.07% from 5-fold cross validation is achieved for the test data. The corresponding sensitivity (Se), specificity (Sp), and the area under the ROC curve (AUC) results are 74.96%, 86.41%, and 0.88, respectively. When excluding an extremely poor signal quality ECG recording in the test data, a mean Acc of 84.85% is achieved, with the corresponding Se, Sp, and AUC values of 79.05%, 89.99%, and 0.92. This study indicates that it is possible to accurately identify AF or non-AF ECGs from a short-term signal episode.

摘要

心房颤动(AF)是一种严重的心血管疾病,其特征是不规则跳动。它是多种心脏病的主要病因,如心肌梗死。自动 AF 节拍检测仍然是一个具有挑战性的任务,需要进一步探索。提出了一种新的框架,将改进的频切片小波变换(MFSWT)和卷积神经网络(CNNs)相结合,用于自动 AF 节拍识别。MFSWT 用于将 1 秒心电图(ECG)段转换为时频图像,然后将图像输入到 12 层 CNN 中进行特征提取和 AF/非 AF 节拍分类。在 MIT-BIH 心房颤动数据库上的结果表明,对于测试数据,通过 5 倍交叉验证实现了平均准确率(Acc)为 81.07%。相应的灵敏度(Se)、特异性(Sp)和 ROC 曲线下面积(AUC)结果分别为 74.96%、86.41%和 0.88。当排除测试数据中一个信号质量极差的 ECG 记录时,平均 Acc 达到 84.85%,对应的 Se、Sp 和 AUC 值分别为 79.05%、89.99%和 0.92。这项研究表明,从短期信号发作中准确识别 AF 或非 AF ECG 是有可能的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243f/6051096/86fa0f9389d7/JHE2018-2102918.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验