Department of Biomedical Engineering, The University of Akron, Akron, Ohio.
Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, New York.
J Tissue Eng Regen Med. 2018 Oct;12(10):2041-2054. doi: 10.1002/term.2739. Epub 2018 Aug 13.
Efforts to enhance the efficiency of neural differentiation of stem cells are primarily focused on exogenous modulation of physical niche parameters such as surface topography and extracellular matrix proteins, or addition of certain growth factors or small molecules to culture media. We report a novel neurogenic niche to enhance the neural differentiation of embryonic stem cells (ESCs) without any external intervention by micropatterning ESCs into spatially organized colonies of controlled size and interspacing. Using an aqueous two-phase system cell microprinting technology, we generated pairs of uniformly sized isolated ESC colonies at defined interspacing distances over a layer of differentiation-inducing stromal cells. Our comprehensive analysis of temporal expression of neural genes and proteins of cells in colony pairs showed that interspacing two colonies at approximately 0.66 times the colony diameter (0.66D) significantly enhanced neural differentiation of ESCs. Cells in these colonies displayed higher expression of neural genes and proteins and formed thick neurite bundles between the two colonies. A computational model of spatial distribution of soluble factors of cells in interspaced colony pairs showed that the enhanced neural differentiation is due to the presence of stable concentration gradients of soluble signalling factors between the two colonies. Our results indicate that culturing ESCs in colony pairs with defined interspacing is a promising approach to efficiently derive neural cells. Additionally, this approach provides a platform for quantitative studies of molecular mechanisms that regulate neurogenesis of stem cells.
研究人员主要通过外部调节物理微环境参数(如表面形貌和细胞外基质蛋白),或向培养基中添加特定的生长因子或小分子,来提高干细胞的神经分化效率。我们报告了一种新的神经发生龛,可通过将胚胎干细胞(ESCs)微图案化为具有一定大小和间隔的空间组织的集落,在不进行任何外部干预的情况下增强其神经分化。我们使用水相双相体系细胞微打印技术,在诱导分化基质细胞层上以定义的间隔距离生成一对均匀大小的、相互隔离的 ESC 集落。我们对集落中细胞的神经基因和蛋白的时间表达进行了全面分析,结果表明,将两个集落间隔约 0.66 倍集落直径(0.66D)可显著增强 ESC 的神经分化。这些集落中的细胞表现出更高水平的神经基因和蛋白表达,并在两个集落之间形成了厚厚的神经突束。对间隔集落中细胞的可溶性因子空间分布的计算模型表明,增强的神经分化是由于两个集落之间存在稳定的可溶性信号因子浓度梯度。我们的结果表明,用具有定义间隔的集落培养 ESC 是一种有效获得神经细胞的很有前途的方法。此外,该方法为定量研究调节干细胞神经发生的分子机制提供了一个平台。