Suppr超能文献

钙铁氧化物中的长程电子相分离。

Long range electronic phase separation in CaFeO.

机构信息

Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, UK.

Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, F-59000, France.

出版信息

Nat Commun. 2018 Jul 30;9(1):2975. doi: 10.1038/s41467-018-05363-6.

Abstract

Incomplete transformations from ferromagnetic to charge ordered states in manganite perovskites lead to phase-separated microstructures showing colossal magnetoresistances. However, it is unclear whether electronic matter can show spontaneous separation into multiple phases distinct from the high temperature state. Here we show that paramagnetic CaFeO undergoes separation into two phases with different electronic and spin orders below their joint magnetic transition at 302 K. One phase is charge, orbital and trimeron ordered similar to the ground state of magnetite, FeO, while the other has Fe/Fecharge averaging. Lattice symmetry is unchanged but differing strains from the electronic orders probably drive the phase separation. Complex low symmetry materials like CaFeO where charge can be redistributed between distinct cation sites offer possibilities for the generation and control of electronic phase separated nanostructures.

摘要

在钙钛矿型锰氧化物中,从铁磁有序到电荷有序状态的不完全转变会导致出现具有巨磁电阻的分相微结构。然而,目前尚不清楚电子物质是否能够自发地分离成与高温状态不同的多个相。在这里,我们表明,顺磁钙铁氧化物在 302 K 时的联合磁转变以下会分离成具有不同电子和自旋有序的两相。一相是电荷、轨道和三聚有序的,类似于磁铁矿(FeO)的基态,而另一相则具有 Fe/Fe^电荷平均化。晶格对称性没有改变,但来自电子有序的不同应变可能驱动了相分离。像 CaFeO 这样的复杂低对称材料,电荷可以在不同的阳离子位置之间重新分布,这为电子相分离纳米结构的产生和控制提供了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ea/6065443/8eb2c8e2c434/41467_2018_5363_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验