Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea.
Phys Chem Chem Phys. 2018 Sep 12;20(35):22439-22444. doi: 10.1039/c8cp02285b.
Reducing power consumption and leakage current in complementary metal-oxide semiconductors (CMOSs) has gained importance for further increasing the transistor density. An effective strategy to achieve this is to use ambipolar carrier transport that can exploit both holes and electrons in a single transistor. We report the enhancement of ambipolar behavior in black phosphorus (BP) field-effect transistors (FET) by forming a low-resistance Ni2P alloy contact via low-vacuum annealing at 250 °C, where the transformation of BP into Ni2P alloy selectively occurred at the source/drain electrodes with the BP channel remaining pristine. The N-channel current on/off ratio and field-effect electron carrier mobility of BP FETs were improved by 98% and 1290%, respectively. Our results suggest that high-performance ambipolar BP FETs with low-resistance ohmic contacts can be achieved via low-temperature vacuum annealing for next-generation CMOS applications.
为了进一步提高晶体管密度,降低互补金属氧化物半导体(CMOS)的功耗和漏电流变得尤为重要。实现这一目标的有效策略是利用双极性载流子输运,在单个晶体管中同时利用空穴和电子。我们通过在 250°C 的低真空退火,在黑磷(BP)场效应晶体管(FET)中形成低电阻 Ni2P 合金接触,从而提高了双极性行为,其中 BP 选择性地在源/漏电极处转化为 Ni2P 合金,而 BP 沟道保持原始状态。BP FET 的 N 通道电流导通/关断比和场效应电子载流子迁移率分别提高了 98%和 1290%。我们的结果表明,通过低温真空退火可以实现具有低电阻欧姆接触的高性能双极性 BP FET,有望用于下一代 CMOS 应用。