Department of Medicine HOT Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
Macalester College, St. Paul, MN, USA.
Cancer Metastasis Rev. 2018 Sep;37(2-3):409-423. doi: 10.1007/s10555-018-9749-6.
While cytochrome P450 (CYP)-mediated biosynthesis of arachidonic acid (AA) epoxides promotes tumor growth by driving angiogenesis, cancer cell intrinsic functions of CYPs are less understood. CYP-derived AA epoxides, called epoxyeicosatrienoic acids (EETs), also promote the growth of tumor epithelia. In cancer cells, CYP AA epoxygenase enzymes are associated with STAT3 and mTOR signaling, but also localize in mitochondria, where they promote the electron transport chain (ETC). Recently, the diabetes drug metformin was found to inhibit CYP AA epoxygenase activity, allowing the design of more potent biguanides to target tumor growth. Biguanide inhibition of EET synthesis suppresses STAT3 and mTOR pathways, as well as the ETC. Convergence of biguanide activity and eicosanoid biology in cancer has shown a new pathway to attack cancer metabolism and provides hope for improved treatments that target this vulnerability. Inhibition of EET-mediated cancer metabolism and angiogenesis therefore provides a dual approach for targeted cancer therapeutics.
虽然细胞色素 P450(CYP)介导的花生四烯酸(AA)环氧化物的生物合成通过驱动血管生成促进肿瘤生长,但 CYP 内在的癌症细胞功能则了解较少。CYP 衍生的 AA 环氧化物,称为环氧化物二十碳三烯酸(EETs),也促进肿瘤上皮细胞的生长。在癌细胞中,CYP AA 加氧酶与 STAT3 和 mTOR 信号通路相关联,但也定位于线粒体,在那里它们促进电子传递链(ETC)。最近,发现糖尿病药物二甲双胍抑制 CYP AA 加氧酶活性,从而设计出更有效的双胍类药物来靶向肿瘤生长。双胍类药物抑制 EET 合成会抑制 STAT3 和 mTOR 通路以及 ETC。双胍类药物活性和类花生酸生物在癌症中的融合显示了一种攻击癌症代谢的新途径,并为针对这种脆弱性的改进治疗提供了希望。因此,抑制 EET 介导的癌症代谢和血管生成为靶向癌症治疗提供了双重方法。