Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
Cell Chem Biol. 2017 Oct 19;24(10):1259-1275.e6. doi: 10.1016/j.chembiol.2017.08.009. Epub 2017 Sep 14.
The mechanisms by which cancer cell-intrinsic CYP monooxygenases promote tumor progression are largely unknown. CYP3A4 was unexpectedly associated with breast cancer mitochondria and synthesized arachidonic acid (AA)-derived epoxyeicosatrienoic acids (EETs), which promoted the electron transport chain/respiration and inhibited AMPKα. CYP3A4 knockdown activated AMPKα, promoted autophagy, and prevented mammary tumor formation. The diabetes drug metformin inhibited CYP3A4-mediated EET biosynthesis and depleted cancer cell-intrinsic EETs. Metformin bound to the active-site heme of CYP3A4 in a co-crystal structure, establishing CYP3A4 as a biguanide target. Structure-based design led to discovery of N1-hexyl-N5-benzyl-biguanide (HBB), which bound to the CYP3A4 heme with higher affinity than metformin. HBB potently and specifically inhibited CYP3A4 AA epoxygenase activity. HBB also inhibited growth of established ER mammary tumors and suppressed intratumoral mTOR. CYP3A4 AA epoxygenase inhibition by biguanides thus demonstrates convergence between eicosanoid activity in mitochondria and biguanide action in cancer, opening a new avenue for cancer drug discovery.
癌症细胞内在的 CYP 单加氧酶促进肿瘤进展的机制在很大程度上是未知的。令人意外的是,CYP3A4 与乳腺癌线粒体相关,并合成了花生四烯酸(AA)衍生的环氧化二十碳三烯酸(EETs),促进电子传递链/呼吸,并抑制 AMPKα。CYP3A4 敲低激活了 AMPKα,促进自噬,并阻止了乳腺肿瘤的形成。糖尿病药物二甲双胍抑制了 CYP3A4 介导的 EET 生物合成并耗尽了癌细胞内在的 EETs。二甲双胍在共晶结构中与 CYP3A4 的活性位点血红素结合,将 CYP3A4 确立为双胍类药物的靶标。基于结构的设计导致了 N1-己基-N5-苄基-双胍(HBB)的发现,它与 CYP3A4 血红素的结合亲和力高于二甲双胍。HBB 强烈且特异性地抑制 CYP3A4 AA 环氧化酶活性。HBB 还抑制了已建立的 ER 乳腺癌肿瘤的生长,并抑制了肿瘤内的 mTOR。因此,双胍类药物对 CYP3A4 AA 环氧化酶的抑制作用表明了线粒体中类花生酸活性和癌症中双胍类药物作用之间的趋同,为癌症药物发现开辟了新途径。