Mitchell Leslie A, Boeke Jef D
Department of Biochemistry and Molecular Pharmacology and Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016.
Department of Biochemistry and Molecular Pharmacology and Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17003-10. doi: 10.1073/pnas.1414399111. Epub 2014 Nov 5.
Chromosome engineering is a major focus in the fields of systems biology, genetics, synthetic biology, and the functional analysis of genomes. Here, we describe the "telomerator," a new synthetic biology device for use in Saccharomyces cerevisiae. The telomerator is designed to inducibly convert circular DNA molecules into mitotically stable, linear chromosomes replete with functional telomeres in vivo. The telomerator cassette encodes convergent yeast telomere seed sequences flanking the I-SceI homing endonuclease recognition site in the center of an intron artificially transplanted into the URA3 selectable/counterselectable auxotrophic marker. We show that inducible expression of the homing endonuclease efficiently generates linear molecules, identified by using a simple plate-based screening method. To showcase its functionality and utility, we use the telomerator to circularly permute a synthetic yeast chromosome originally constructed as a circular molecule, synIXR, to generate 51 linear variants. Many of the derived linear chromosomes confer unexpected phenotypic properties. This finding indicates that the telomerator offers a new way to study the effects of gene placement on chromosomes (i.e., telomere proximity). However, that the majority of synIXR linear derivatives support viability highlights inherent tolerance of S. cerevisiae to changes in gene order and overall chromosome structure. The telomerator serves as an important tool to construct artificial linear chromosomes in yeast; the concept can be extended to other eukaryotes.
染色体工程是系统生物学、遗传学、合成生物学以及基因组功能分析领域的一个主要研究重点。在此,我们描述了“端粒生成器”,这是一种用于酿酒酵母的新型合成生物学装置。端粒生成器旨在在体内将环状DNA分子诱导转化为有丝分裂稳定的线性染色体,这些染色体富含功能性端粒。端粒生成器盒在人工移植到URA3可选择/反选择营养缺陷型标记中的内含子中央,编码位于I-SceI归巢内切酶识别位点两侧的反向酵母端粒种子序列。我们表明,归巢内切酶的诱导表达能有效地产生线性分子,这可通过一种简单的基于平板的筛选方法来鉴定。为了展示其功能和实用性,我们使用端粒生成器对最初构建为环状分子的合成酵母染色体synIXR进行环形排列,以产生51个线性变体。许多衍生的线性染色体赋予了意想不到的表型特性。这一发现表明,端粒生成器为研究基因在染色体上的位置(即端粒接近度)的影响提供了一种新方法。然而,大多数synIXR线性衍生物支持细胞存活,这突出了酿酒酵母对基因顺序和整体染色体结构变化的固有耐受性。端粒生成器是在酵母中构建人工线性染色体的重要工具;这一概念可扩展到其他真核生物。