Tanimoto Hirokazu, Sallé Jeremy, Dodin Louise, Minc Nicolas
Institut Jacques Monod, CNRS UMR7592 and Université Paris Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France.
Nat Phys. 2018 Aug;14(8):848-854. doi: 10.1038/s41567-018-0154-4. Epub 2018 May 28.
In early embryos, microtubules form star-shaped aster structures that can measure up to hundreds of micrometres, and move at high speeds to find the geometrical centre of the cell. This process, known as aster centration, is essential for the fidelity of cell division and development, but how cells succeed in moving these large structures through their crowded and fluctuating cytoplasm remains unclear. Here, we demonstrate that the positional fluctuations of migrating sea urchin sperm asters are small, anisotropic, and associated with the stochasticity of dynein-dependent forces moving the aster. Using in vivo magnetic tweezers to directly measure aster forces inside cells, we derive a linear aster force-velocity relationship and provide evidence for a spring-like active mechanism stabilizing the transverse position of the asters. The large frictional coefficient and spring constant quantitatively account for the amplitude and growth characteristics of athermal positional fluctuations, demonstrating that aster mechanics ensure noise suppression to promote persistent and precise centration. These findings define generic biophysical regimes of active cytoskeletal mechanics underlying the accuracy of cell division and early embryonic development.
在早期胚胎中,微管形成星形星体结构,其尺寸可达数百微米,并高速移动以找到细胞的几何中心。这一过程称为星体集中,对细胞分裂和发育的保真度至关重要,但细胞如何成功地在拥挤且波动的细胞质中移动这些大型结构仍不清楚。在这里,我们证明迁移的海胆精子星体的位置波动很小、具有各向异性,并且与驱动星体移动的动力蛋白依赖性力的随机性有关。利用体内磁镊直接测量细胞内的星体力,我们得出了线性星体力-速度关系,并为一种类似弹簧的主动机制提供了证据,该机制可稳定星体的横向位置。大的摩擦系数和弹簧常数定量地解释了无热位置波动的幅度和增长特征,表明星体力学确保了噪声抑制,以促进持续且精确的集中。这些发现定义了细胞分裂和早期胚胎发育准确性背后的活性细胞骨架力学的一般生物物理机制。